特征提取和BP网络识别 蔬菜分类 水果分类 等

本文探讨了特征提取在模式识别中的重要性,特别是在蔬菜和水果分类任务中。介绍了图像二值化处理的阈值选择方法,以及人工神经网络,特别是BP神经网络在果蔬自动分类系统中的应用。实验结果显示,通过颜色、纹理和形状特征的提取,结合BP网络,对10种蔬菜的50张图像进行了有效识别。
摘要由CSDN通过智能技术生成

特征提取算法:在模式识别中,特征提取是非常重要的,它强烈的影响着后面的分类器的设计及其性能。假使对不同类别这些特征差别很大,那就比较容易设计出具有较好性能的分类器。因此,特征选择是模式识别中的一个关键问题。由于在很多实际问题中常常不容易找到那些最重要的特征,或受条件限制不能对它们进行测量,这就使特征选择和提取的任务复杂化而成为构造模式识别系统最困难的任务之一。

特征选择与提取的基本任务是如何从许多特征中找出那些最有效的特征。任何识别过程的第一步,不论用计算机还是由人去识别,都要首先分析各种特征的有效性并选出最有代表性的特征。显然特征选择和提取这一任务应在设计分类器之前进行。

<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab_python22

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值