yolov5的安全检测危险品的x光图像的 危险品识别 目标检测

该博客介绍了使用YoloV5进行危险品识别的实践,基于PyTorch架构,针对X光图像进行目标检测。训练过程较慢但效果尚可,通过增加训练次数可提升性能。数据集配置在ab.yaml文件中,类别数量和类别列表进行了定制。训练结果展示了模型能有效鉴别危险品,图像来源于科大讯飞算法竞赛,预训练权重文件可在Ultralytics的GitHub发布页获取。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

yolov5的安全检测危险品的x光图像的 危险品识别 目标检测

基于pytorch架构

实现了道具的危险品识别检测

效果还可以 训练的较慢,如果训练次数增多,还可以有所提升 

主要还是要靠方法和技巧 如下是训练的结果

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab_python22

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值