一、butterworth滤波器也称最平响应特性滤波器,其特征多项式为:
|K(jΩ)|^2=K(jΩ)K(-jΩ)=(Ω/Ωc)^2N
巴特沃斯滤波器的模平方函数为:
|H(jΩ)|^2=1/(1+|K(jΩ)|^2)=1/(1+(Ω/Ωc)^2N)
N为滤波器的阶数;
当Ω=Ωс时,|H(jΩ)|=1/√2,所以Ωc为滤波器的半功率点或幅频特性(-3dB)点,随着N增大,通带边缘变化加快,幅频特性更加逼近,但无论N取多少,幅频特性总经过(-3dB)点。
二、为巴特沃斯滤波器设计技术标准:
通带截止频率fp=6kHz;
阻带截止频率fs=12kHz;
通带最大衰减1dB;
阻带最大衰减30dB;
三、在matlab中程序编写如下:
clear
clc
OmegaP=12*pi*10^3;%通带截止频率
OmegaS=24*pi*10^3;%阻带截止频率
Rp=1;As=30;
[N,OmegaC]=buttord(OmegaP,OmegaS,Rp,As,'s');%计算模拟巴特沃思阶数N和3dB截止频率OmegaC
[b,a]=butter(N,OmegaC,'s');%“s”表示模拟滤波器
w0=[OmegaC,OmegaS];%以下4句是检验Ωp,Ωs对应的衰减指标
[H,w]=freqs(b,a);
Hx=freqs(b,a,w0);
dbHx=-20*log10(abs(H