csdn上的一个数学猜想

jintianhu2000在这个帖子里说:

这是本人读高中时发现的一个数学猜想,一直不能证明或推翻
 
任何一个不能被3整除的偶数,如488,按下列步骤:
若该数为偶数,则把它各位数之和的平方作为新数;若该数为奇数,则把它各位数之和的立方作为新数。再把那个新数重复以上步骤(偶数就各位数之和平方,奇数就各位数之和立方),一步步计算下去,肯定能在9步内变为1。
如:
  488(偶)    4+8+8=20      20*20=400
  400(偶)    4+0+0=4       4*4=16
  16(偶)     1+6=7         7*7=49
  49(奇)     4+9=13        13*13*13=2197
  2197(奇)   2+1+9+7=19    19*19*19=6859
  6859(奇)   6+8+5+9=28    28*28*28=21952
  21952(偶)  2+1+9+5+2=19  19*19=361
  361(奇)    3+6+1=10      10*10*10=1000
  1000(偶)   1+0+0+0=1     1*1=1   (共9步)
 
哪位高手能证明或推翻它??


    这个“9”步可是大有玄机。写一个小程序统计n<=1 000 000的范围内需要k次变换才能变成1的有多少个数,程序运行结果如下:

6, 1786, 31779, 58756, 57730, 55571, 83186, 25783, 18737, 0, 0, 0, ...

    可以看到,需要8步的有25783个数,需要9步的有18737个,但需要9步以上的硬是一个数都没有,这个“断裂”感觉有点不自然。为什么有5.6%的数都需要9步,却没有一个数需要9步以上?即使我们找到了一个(可能很大的)反例,这个现象仍然值得深究。
    另外,很多人认为这个命题显然是错误的,这种说法是不正确的。虽然对于充分大的数其数字和也能达到足够大,但这个数字和是要平方(或者立方)的。你不能指望每次操作后新的数恰好又是99999...99这样令人满意的极端形式,很有可能按照这个算法来个两三次就变成10000...000了。寻找一个反例并不那么简单。

    40楼mathe指出了第一个反例,这个反例是一个各位数字和S=70616022582298623212586706134294505827921361106736747909217704596951778822208的偶数。由于这个数字和S不能被3整除,因此原数也不能被3整除。数字和为S的偶数是一定存在的,例如S个“1”后面再加一个“0”。第一次变换后该数将变为

  70616022582298623212586706134294505827921361106736747909217704596951778822208^2
= 49866226453437091137711536298477731014510413655235894003548957882878563978585
   95386978574399462830249936249115434841097417814389990990179862339647673995264

    在Mathematica上用Total[IntegerDigits[%]]^(2 + Mod[%, 2])可以轻易验证,后面几步分别变为595984, 1600, 49, 2197, 6859, 21952, 361, 1000, 1,整个过程一共10步。原猜想被推翻。此后,命题的一些扩展形式成了人们关注的焦点。
    一个有趣的问题是,该问题最小的反例是多少?这个“最小的反例”很有可能比著名的Pólya猜想要强得多。1919年,Pólya曾经猜想:小于等于n的正整数中,质因子个数为奇数的数不少于质因子个数为偶的数。1958年C.B.Haselgrove给出了第一个反例,这个反例有361位。1980年,Minoru Tanaka找出了Pólya猜想最小的反例n=906150257。

在探索哥德巴赫猜想的过程中,欧拉函数扮演了至关重要的角色,尤其是在确定大于一个给定数值的素数个数的下限时。欧拉函数φ(n)定义为小于或等于n的正整数中与n互质的数的数目。在数论中,欧拉函数与素数分布紧密相关,并且可以用来估计素数的密度。 参考资源链接:[数学证明:哥德巴赫猜想的严格解析](https://wenku.csdn.net/doc/13xzmsv43t) 首先,通过对欧拉函数的深入研究,我们能够推导出素数个数的一个下界公式。在《数学证明:哥德巴赫猜想的严格解析》中,作者Zengyong Liang利用欧拉函数的性质来估计在某个特定区间内素数的数量。具体来说,通过对欧拉函数的估计和分析,可以推导出一个关于素数数量的不等式,这个不等式给出了素数个数的一个下限估计。 进一步地,数学归纳法在这里起到了至关重要的作用。通过数学归纳法,首先验证在某个基本区间内欧拉函数所推导出的下限是成立的。然后,假设对于小于某个数的区间内,这个下限估计是正确的。基于这个假设,如果能够进一步证明对于比这个数稍大的区间,素数个数的下限同样成立,那么就完成了归纳步骤,从而证明了对于所有足够大的数,欧拉函数给出的下限估计都是有效的。 结合《数学证明:哥德巴赫猜想的严格解析》中的内容,我们可以看到,通过集合论、函数理论和筛法等数学工具的综合应用,以及对欧拉函数深入的数学分析,作者能够构建起哥德巴赫猜想成立的一个坚实的理论框架。此外,为了进一步验证理论结果的可靠性,作者还采用了计算机验证,通过大量的数值实验来支撑理论证明,使得哥德巴赫猜想的证明不仅仅停留在理论层面,而且在实践中也得到了验证。 总之,欧拉函数在哥德巴赫猜想的研究中是确定素数个数下限的关键工具,它结合数学归纳法和计算机验证,共同为哥德巴赫猜想的严格证明提供了理论和实证的支持。为了更全面地理解和掌握欧拉函数在数论中的应用及其在哥德巴赫猜想证明中的作用,建议阅读《数学证明:哥德巴赫猜想的严格解析》一书,它将为你提供更深入的洞见和详细的证明过程。 参考资源链接:[数学证明:哥德巴赫猜想的严格解析](https://wenku.csdn.net/doc/13xzmsv43t)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值