非传统题型练习:三道交互式题目

本文介绍了三道非传统的交互式编程题目,包括寻找名人、中等工资和确定女友。通过分析和解题思路,展示了如何在限制询问次数下解决问题。题目来源于Matrix67,并提供了相关资源供读者实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem 1: famous 谁是名人
题目来源:Matrix67根据经典问题改编


    题目和测试库源码直接见http://www.matrix67.com/blog/article.asp?id=179

题解:
    显然名人最多有一个。问两个还没有问过的人A和B。如果A认识B,那么A肯定不是名人;如果A不认识B,那么B肯定不是名人。总之,结果无论是什么,总有一个人要排除。由于题目说了一定有名人,那么只需要询问n-1次,每次排除一个人,剩下的肯定就是名人了。

Problem 2: meandian 中等工资
题目来源:CEOI 2006 有细节改动 (Translated by Matrix67)



问题描述
    一些公司不愿意透露员工的工资,这样可以防止工会的领导者知道员工的报酬有多低,从而避免烦人的涨工资的谈判。不过,有时公司很乐意为统计和市场目的透露一些消息。
    其中一个公司愿意回答的问题是这样的形式:“员工A、B、C、D的中等工资是多少”。四个数的“中等值”定义为中间的两个值的算术平均数。更明确的,a,b,c,d的中等值按这样的方式得到:首先对这四个数排序,然后计算排序后的第二个数x和第三个数y的平均数(x+y)/2。你的目标是通过询问一些这种形式的问题来得到员工具体的工资数。注意有一些员工的工资有可能永远不能推出(比如工资最低的那个人)即使所有可能的问题都被问过。
    该公司有N(4<=N<=100)名员工,分别用1到N标记。每个员工的工资是一个小于等于100 000的正偶数,且没有两个员工的工资相同。
    你将得到一个实现中等值的询问的库。给出四个不同的整数A,B,C,D (1<=A,B,C,D<=N),这个函数可以返回员工A、B、C、D的中等工资。
    写一个程序访问测试库,找出所有员工准确的工资数(除了永远不能确定的以外)。你的程序最多允许询问1000次问题。

交互方法
    你将获得的测试库提供了以下三个函数或过程:
       function init:longint;
       function meandian(a,b,c,d:longint):longint;
       procedure solution(var sol:array of longint);
    Init:调用该函数不带参数。这个函数必须在程序开头调用且只能调用一次。它将返回一个整数N,即公司的员工数。
    Meandian:这个函数被调用时需要带四个参数A、B、C、D。这四个数应该是从1到N的四个不同的数(包括1和N)。它返回一个整数,是员工A、B、C、D的中等工资。
    Solution:这个函数应该在程序结尾调用。你需要用一个表示员工工资的整数数组来作为它的参数。如果某个员工的工资不能确定,数组中对应的值应该为-1。
    注意这个数组必须从0开始。也就是说员工1的工资应该在数组的0位置,员工2应该在1的位置,依此类推。

   
<think>好的,用户需要我根据系统规划与管理师第二版教程的人工智能内容,生成15道中等偏难的单选题及答案解析。首先,我需要确认这些题目涵盖定义、特点、关键技术(如机器学习、自然语言处理等)以及应用和发展方面。 接下来,我得回忆教程中的重点内容。生成式人工智能是重点之一,涉及深度学习和神经网络,这可能对应到定义题。机器学习中的监督学习和无监督学习的区别也是一个常见考点。自然语言处理的关键技术,如词嵌入和循环神经网络,需要包括在内。另外,应用场景比如医疗、金融、制造业的例子需要具体问题。 然后,考虑题目的难度。中等偏难可能需要结合实际应用或稍微复杂的概念,比如强化学习的特点、卷积神经网络的应用场景。混淆选项的设计也很重要,例如在监督学习的题目中,选项可能包括无监督学习的例子来增加迷惑性。 还需要确保每个问题都有明确的答案解析,引用教程中的知识点。例如,在生成对抗网络的问题中,需要指出其由生成器和判别器组成,并引用相关文献。同时,注意题干的表述要准确,避免歧义。 检查是否覆盖了所有要求的方面:定义、特点、关键技术、应用和发展。例如,最后一题关于未来挑战,可能涉及伦理和安全问题,这也是当前AI发展的热点。 最后,确保格式正确,题目和答案分开,解析部分引用正确的参考资料。可能还需要调整选项顺序,避免模式化,增加题目的多样性。完成这些步骤后,再通读一遍,确保没有重复的问题,并且每个知识点都有所体现。</think>### 人工智能单选题(中等偏难) **1. 以下哪项最能描述生成式人工智能的核心特征?** A. 仅用于数据分类 B. 通过预定义规则生成输出 C. 利用深度学习模型创造新内容 D. 专注于优化硬件性能 **答案:C** **解析**:生成式人工智能的核心是通过训练模型(如GAN、Transformer)生成全新内容,如图像、文本等,区别于传统分类任务[^1]。 --- **2. 监督学习与无监督学习的本质区别是?** A. 是否需要人工标注数据 B. 是否使用神经网络 C. 是否处理结构化数据 D. 是否涉及强化反馈 **答案:A** **解析**:监督学习依赖带标签的数据训练模型(如分类任务),而无监督学习从无标签数据中发现模式(如聚类)[^2]。 --- **3. 自然语言处理(NLP)中“词嵌入”技术的主要作用是?** A. 压缩文本存储空间 B. 将词语映射为高维向量以捕捉语义 C. 直接生成语法树 D. 实现多语言翻译 **答案:B** **解析**:词嵌入(如Word2Vec)通过向量表示词语的语义关联,是NLP任务(如情感分析)的基础技术[^1]。 --- **4. 以下哪项属于强化学习的典型应用?** A. 图像风格迁移 B. 围棋AI(AlphaGo) C. 文本摘要生成 D. 用户聚类分析 **答案:B** **解析**:强化学习通过环境交互和奖励机制优化决策,AlphaGo通过自我对弈强化策略是其经典案例[^3]。 --- **5. 卷积神经网络(CNN)最适合处理的任务类型是?** A. 时间序列预测 B. 图像识别 C. 文本分类 D. 关联规则挖掘 **答案:B** **解析**:CNN通过卷积核提取局部特征,特别适合图像的空间层次结构分析[^2]。 --- **6. 以下哪项是生成对抗网络(GAN)的核心组件?** A. 编码器与解码器 B. 生成器与判别器 C. 支持向量机与决策树 D. 递归神经网络与注意力机制 **答案:B** **解析**:GAN由生成器(生成假数据)和判别器(区分真假)通过对抗训练提升生成质量。 --- **7. 在机器学习模型评估中,“过拟合”现象表现为?** A. 训练误差和测试误差均高 B. 训练误差低但测试误差高 C. 训练误差高但测试误差低 D. 训练误差和测试误差均低 **答案:B** **解析**:过拟合指模型在训练数据上表现良好,但泛化能力差,常因模型复杂度过高导致。 --- **8. 以下哪种技术属于自然语言处理中的“序列到序列”模型?** A. 随机森林 B. Transformer C. K-Means D. 逻辑回归 **答案:B** **解析**:Transformer通过自注意力机制实现序列转换,广泛用于机器翻译等Seq2Seq任务。 --- **9. 知识图谱的核心应用场景是?** A. 加速数值计算 B. 存储非结构化数据 C. 描述实体间关系以支持推理 D. 优化网络传输协议 **答案:C** **解析**:知识图谱以图结构表示实体间语义关系,支撑智能搜索、推荐系统等应用。 --- **10. 以下哪项是人工智能伦理问题的典型表现?** A. 模型训练时间过长 B. 数据隐私泄露风险 C. 硬件成本过高 D. 算法可解释性过强 **答案:B** **解析**:AI应用中数据收集可能侵犯隐私,需通过合规设计(如联邦学习)降低风险。 --- **11. 循环神经网络(RNN)的主要缺陷是?** A. 无法处理图像数据 B. 长期依赖学习困难 C. 计算效率过高 D. 仅支持监督学习 **答案:B** **解析**:RNN因梯度消失/爆炸问题难以捕捉长距离依赖,LSTM和GRU为此改进的变体[^2]。 --- **12. 以下哪项技术属于计算机视觉中的“目标检测”?** A. 图像灰度化 B. 边缘检测 C. YOLO(You Only Look Once) D. 直方图均衡化 **答案:C** **解析**:YOLO是单阶段目标检测算法,直接在图像中定位并分类多个对象。 --- **13. 联邦学习的核心优势是?** A. 提升模型准确率 B. 保护数据隐私 C. 减少硬件需求 D. 加速数据清洗 **答案:B** **解析**:联邦学习允许在本地训练模型后聚合参数,避免原始数据集中传输。 --- **14. 以下哪项是人工智能在制造业的典型应用?** A. 自动生成新闻稿 B. 预测性设备维护 C. 股票价格预测 D. 个性化广告推荐 **答案:B** **解析**:AI通过传感器数据分析预测设备故障,减少停机时间,属于工业4.0关键技术。 --- **15. 人工智能未来发展面临的最大挑战是?** A. 算力不足 B. 算法复杂度低 C. 伦理与安全风险 D. 数据量过少 **答案:C** **解析**:AI的滥用可能导致偏见、失业等问题,需建立法规和伦理框架。 --- **引用说明** [^1]: 生成式人工智能定义及发展历程相关内容。 : 机器学习、深度学习技术原理及应用场景分析。 : 数据处理与AI伦理问题的实践案例与挑战。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值