概述
根据文本提示生成 3D 数字资产的能力代表了人工智能和计算机图形学领域最近最令人兴奋的发展之一。随着 3D 数字资产市场规模预计将从2024 年的 28.3 亿美元增加到 2029 亿美元,文本转 3D 人工智能模型将在游戏、电影、电子商务等行业的内容创作革命中发挥重要作用。但这些人工智能系统究竟是如何工作的呢?在本文中,我们将深入探讨文本转 3D 生成背后的技术细节。
3D 生成的挑战
从文本生成 3D 资产比生成 2D 图像要复杂得多。虽然 2D 图像本质上是像素网格,但 3D 资产需要在三维空间中表示几何图形、纹理、材质,通常还有动画。这种增加的维度和复杂性使生成任务更具挑战性。
文本到 3D 生成的一些关键挑战包括:
- 表示 3D 几何和结构
- 在 3D 表面上生成一致的纹理和材质
- 从多个角度确保物理合理性和一致性
- 同时捕捉精细细节和整体结构
- 生成可轻松渲染或 3D 打印的资产
为了应对这些挑战,文本到 3D 模型利用了几种关键技术和技巧。
文本转 3D 系统的关键组件
大多数最先进的文本到 3D 生成系统都有一些共同的核心组件:
- 文字编码: Converting the input text prompt into a numerical representation
- 3D表示:一种表示三维几何形状和外观的方法
- 生成模型:生成 3D 资产的核心 AI 模型
- 渲染:将三维表示转换为二维图像进行可视化
让我们更详细地探讨每一个问题。
文本编码
第一步是将输入的文本提示转换为 AI 模型可以使用的数字表示。这通常使用BERT 或 GPT等大型语言模型来完成。
3D 表示
在 AI 模型中,有几种常见的表示 3D 几何的方法:
- 体素网格:表示占用或特征的 3D 值数组
- 点云: Sets of 3D points
- 网格:定义表面的顶点和面
- 隐式函数:定义曲面的连续函数(例如有符号距离函数)
- 神经辐射场(NeRF):表示 3D 空间中的密度和颜色的神经网络
每种方法在分辨率、内存使用量和生成难易程度方面都有所取舍。许多近期模型都使用隐式函数或 NeRF,因为它们可以在合理的计算要求下获得高质量的结果。
例如,我们可以将一个简单的球体表示为一个有符号的距离函数:
import numpy as np
def sphere_sdf(x, y, z, radius=1.0):
return np.sqrt(x**2 + y**2 + z**2) - radius
# Evaluate SDF at a 3D point
point = [0.5, 0.5