ML_Note
马卫飞
上市公司深度学习算法工程师---深度学习,计算机视觉,图像处理,嵌入式开发,android开发
展开
-
机器学习笔记(一)机器学习入门之旅
//第一章---机器学习基础//第一部分:分类************************************************************************************************************************(一)本章主要的内容有: 1--何为机器学习 1--传感器和海量数据原创 2016-04-21 11:58:50 · 780 阅读 · 0 评论 -
一文读懂卷积神经网络
卷积神经网络转载请注明:http://blog.csdn.net/stdcoutzyx/article/details/41596663自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet、cuda-convnet2。为了增进CNN的理解和使用,特写此博文,以其与人转载 2016-09-06 09:19:49 · 1472 阅读 · 0 评论 -
Harris角点检测
转载自:http://www.cnblogs.com/ronny/p/4009425.html1. 不同类型的角点在现实世界中,角点对应于物体的拐角,道路的十字路口、丁字路口等。从图像分析的角度来定义角点可以有以下两种定义:角点可以是两个边缘的角点;角点是邻域内具有两个主方向的特征点;前者往往需要对图像边缘进行编码,这在很大程度上依赖于图像的分割与边缘提取,转载 2017-02-27 19:45:33 · 662 阅读 · 0 评论 -
【SVM理论到实践2】OpenCv中的支持向量机SVM源代码的解读
/***************************************************************************************************** 程序功能: OpenCv中的支持向量机SVM源代码的解读使用步骤: 无论是使用OpenCv中的SVM还是使用其他库中的SVM进行分类,一般的步骤分为以下几步原创 2017-03-03 22:42:38 · 1661 阅读 · 0 评论 -
【SVM理论到实践3】OpenCv中自带的两个例子:线性可分和线性不可分代码解读
#include #include #include using namespace cv;int main(){ //【1】创建可视化的窗口 int width = 512; int height = 512; cv::Mat image = Mat::zeros(height, width, CV_8UC3); //【2】设置训练数据原创 2017-03-03 22:44:30 · 1070 阅读 · 0 评论 -
【SVM理论到实践4】基于OpenCv中的SVM的手写体数字识别
//由于本人每天时间非常紧张,所以博客仅供各位参考,里面的代码都是运行过的,直接可以运行本章的学习目标: 1)手写体数字识别数据库MNIST 2)基于SVM训练的具体步骤 1)手写体数字识别数据库MNISTMNIST(Mixed National Institute of Standards and Technology)是一个大型的手写体数字识别数据库,广泛原创 2017-03-03 22:52:54 · 5832 阅读 · 5 评论 -
【SVM理论到实践1】SVM支持向量机的简介
支持向量机SVM理论到实践一:SVM支持向量机的简介本章的学习目标: 1)SVM:支持向量机的简介 2)支持向量机与传统机器学习算法相比的优点 3)为什么需要SVM的核函数 4)SVM中常用的四种核函数 5)OpenCv中核函数的定义1)SVM:支持向量机的简介传统的模式识别技术只考虑训练样本的拟合情况,并且以最小化分类器在训原创 2017-03-03 22:37:11 · 2099 阅读 · 0 评论 -
OpenCv中决策树源代码解读(一)
/*********************************************************************************************************模块说明: Decision Trees模块说明: 1)The ML classes discussed in this section impleme原创 2017-05-26 08:40:52 · 2523 阅读 · 0 评论 -
OpenCv中基于决策树的分类任务代码解读(二)
/*****************************************************************************************************************文件说明: OpenCv中,决策树训练程序的分析开发环境: Vs2012+OpenCv2.4.9+Win10时间地点:原创 2017-05-26 08:44:31 · 1087 阅读 · 0 评论 -
使用opencv的SVM和神经网络实现车牌识别
一、前言本文参考自《深入理解OpenCV 实用计算机视觉项目解析》中的自动车牌识别项目,并对其中的方法理解后,再进行实践。深刻认识到实际上要完成车牌区域准确定位、车牌区域中字符的准确分割,字符准确识别这一系列步骤的困难。所以最后的识别效果也是有待进一步提高。二、程序流程程序流程如下所示:相应的main函数如下[cpp] view转载 2017-06-13 11:57:08 · 2185 阅读 · 0 评论 -
使用opencv的SVM实现车牌区域识别
一、前言本文仅仅演示使用opencv2.4.6中已经定义好的SVM函数实现对车牌区域正负样本的训练,然后使用训练好的SVM模型对测试样本进行预测。二、所使用的正负样本首先我将一系列图片进行图像预处理、分割等一系列步骤,这部分内容可以参看《深入理解opencv 使用计算机视觉项目解析》,这样从中挑选出100个正样本(车牌区域)和70个负样本(非车牌区域),大小均为14转载 2017-06-13 11:58:39 · 2962 阅读 · 2 评论 -
OpenCV3.0 HOG+SVM行人检测器
介绍什么的请参考:利用Hog特征和SVM分类器进行行人检测我只说一下Opencv3.0里面,需要注意的地方。 本人接触OpenCV很短的时间,新手。OpenCV3.0相比2.X,接口更加清晰,还是有很大的改动的。 主要有几个需要注意的地方: 1. sampleLabelMat的数据类型必须为有符号整数型。 2. 加载已经训练好的分类器,需要注意: svm = SVM::转载 2017-06-13 19:46:13 · 1893 阅读 · 1 评论 -
自己训练SVM分类器进行HOG行人检测
我搭建了自己的独立博客,此篇文章的新地址:http://masikkk.com/article/SVM-HOG-self-training/正样本来源是INRIA数据集中的96*160大小的人体图片,使用时上下左右都去掉16个像素,截取中间的64*128大小的人体。负样本是从不包含人体的图片中随机裁取的,大小同样是64*128(从完全不包含人体的图片中随机剪裁出64*1转载 2017-06-13 19:49:37 · 1625 阅读 · 0 评论 -
深度学习系列Part2:迁移学习和微调深度卷积神经网络
http://www.jiqizhixin.com/article/1465本文是微软数据科学家 Anusua Trivedi 所写的《Deep Learning》系列文章的第二部分,是对迁移学习和微调深度卷积神经网络的介绍。机器之心此前也已经编译了该系列的第一部分,详情点击《五大主流深度学习框架比较分析:MXNET是最好选择》。文中涉及到的论文可点击这里下载。这是转载 2016-09-05 22:22:58 · 18185 阅读 · 2 评论 -
从入门到精通:卷积神经网络初学者指南
转载自:http://www.jiqizhixin.com/article/1363?utm_source=tuicool&utm_medium=referral这是一篇向初学者讲解卷积神经网络的系列文章,机器之心编译了已经发表了的 Part 1 和 Part 2。此系列文章若有更新,机器之心依然会分享给大家。 Part 1:图像识别任务介绍卷积转载 2016-09-05 21:33:16 · 13119 阅读 · 0 评论 -
行人检测资源-----源代码及其Paper
这是行人检测相关资源的第二部分:源码和数据集。考虑到实际应用的实时性要求,源码主要是C/C++的。源码和数据集的网址,经过测试都可访问,并注明了这些网址最后更新的日期,供学习和研究进行参考。(欢迎补充更多的资源)1 Source Code1.1 INRIA Object Detection and Localization Toolkithttp://p原创 2016-08-31 17:02:15 · 5640 阅读 · 0 评论 -
OpenCv学习笔记--支持向量机SVM之C++的实现(1)
(一)支持向量机SVM的介绍 1--本文尝试解决下面的问题 如何使用OpenCv中的函数CvSVM::train()训练一个SVM分类器,以及用CvSVM::predit测试训练结果 2--详细探究OpenCv中的CvSVM支持向量机类的各种函数和功能(二)什么是支持向量机(SVM) 1--支持向量机SVM---就是一个分类器,正式的定义是,一个能够将不同类样本原创 2016-04-21 22:26:41 · 4891 阅读 · 1 评论 -
OpenCv学习笔记--支持向量机SVM线性可分情况下的OpenCv实现的超详细注释(2)
/*********************************************************************************************程序功能: OpenCv2.4.8之机器学习模块---(1)支持向量机SVM-----线性可分情况下的SVM编写环境: OpenCv2.4.8+VS2010地点时间:原创 2016-04-23 15:22:20 · 1115 阅读 · 0 评论 -
OpenCv学习笔记---OpenCv中支持向量机模块SVM------源代码分析
/**************************************************************************************** Support Vector Machines ***********************原创 2016-04-23 17:37:19 · 2443 阅读 · 0 评论 -
最小二乘法多项式曲线拟合原理与实现
http://blog.csdn.net/jairuschan/article/details/7517773/概念最小二乘法多项式曲线拟合,根据给定的m个点,并不要求这条曲线精确地经过这些点,而是曲线y=f(x)的近似曲线y= φ(x)。原理[原理部分由个人根据互联网上的资料进行总结,希望对大家能有用] 给定数据点pi(xi转载 2016-07-24 15:30:40 · 2665 阅读 · 0 评论 -
基于最小二乘法的直线拟合----同济---第六版---下册---125页
一.背景 5月9号到北大去听hulu的讲座《推荐系统和计算广告在视频行业应用》,想到能见到传说中的项亮大神,特地拿了本《推荐系统实践》求签名。讲座开始,主讲人先问了下哪些同学有机器学习的背景,我恬不知耻的毅然举手,真是惭愧。后来主讲人在讲座中提到了最小二乘法,说这个是机器学习最基础的算法。神马,最基础,我咋不知道呢! 看来以后还是要对自己有清晰认识。 回来赶紧上百度,搜转载 2016-07-24 15:34:06 · 879 阅读 · 0 评论 -
基于最小二乘法的曲线拟合的C++代码的实现
简单思路如下:1,采用目标函数对多项式系数求偏导,得到最优值条件,组成一个方程组;2,方程组的解法采用行列式变换(两次变换:普通行列式——三角行列式——对角行列式——求解),行列式的求解算法上优化过一次了,目前还没有更好的思路再优化运算方法,限幅和精度准备再修改修改目前存在的问题:1,代码还是太粗糙2,数学原理可行,但是计算机运算有幅度溢出和精度问题,这方面欠考虑,导致高阶大数据可能拟合转载 2016-07-24 17:28:07 · 11307 阅读 · 0 评论 -
Halocn---MvTec--Halcon机器视觉软件包几位算法研究人员相关的主页
http://iuks.informatik.tu-muenchen.de/members/steger/publications*********************************************************************************************此主页中有相关的英文论文:1-----摄像机标定2-----模板匹配原创 2016-07-24 15:47:49 · 1633 阅读 · 0 评论 -
计算机视觉的专家和网站
视觉跟踪综述 目标跟踪是绝大多数视觉系统中不可或缺的环节。在二维视频跟踪算法中,基于目标颜色信息或基于目标运动信息等方法是常用的跟踪方法。从以往的研究中我们发现,大多数普通摄像头(彩色摄像头)下非基于背景建模的跟踪算法都极易受光照条件的影响。这是因为颜色变化在某种程度上是光学的色彩变化造成的。如基于体素和图像像素守恒假设的光流算法它也是假设一个物体的颜色在前后两帧没有巨大而明显的变化。 但在特定转载 2016-07-26 15:15:14 · 5068 阅读 · 0 评论 -
浅谈OpenCv
OpenCV是一个由Interl公司支持的开源机器视觉库,关于它的介绍,网上随便一搜就车载斗量。这里我不谈OpenCV的主要内容,而是将这段时间来对它的使用心得作个简单介绍,以启发打算用这个库的朋友的思路,与大家一起来分享。 我在学校的时候,虽然是图像处理研究方向,但真正具体的应用到图像的很多东西,还是在参加工作以后的事。以前在处理图像的时候,我们从不担心速度的问题,以为计算机硬件转载 2016-08-08 11:28:58 · 1403 阅读 · 1 评论 -
基于LSD的直线提取算法
LSD是一种局部提取直线的算法,速度比Hough要快。但是有局部算法的缺点:1.对于直线相交情况,因为设置了每个点是否USED,因此每个点只能属于一条直线,若有相交必有至少一条直线被割裂为两条。又因为其基于梯度,直线交点梯度值往往又较小(不被检测为边缘点),因此很有可能相交的两条直线在交点处被割裂为四条线段。2.由于局部检测算法自增长的特点,对于长线段被遮挡、局部模糊等原因转载 2016-08-29 19:39:59 · 3971 阅读 · 0 评论 -
Matlab计算机视觉/图像处理工具箱推荐
计算机视觉/图像处理研究中经常要用到Matlab,虽然其自带了图像处理和计算机视觉的许多功能,但是术业有专攻,在进行深入的视觉算法研究的时候Matlab的自带功能难免会不够用。本文收集了一些比较优秀的Matlab计算机视觉工具箱,希望能对国内的研究者有所帮助。VLFeat:著名而常用项目网站:http://www.vlfeat.org许可证:BSD著名的计算机视觉/转载 2016-08-31 16:47:15 · 1125 阅读 · 0 评论 -
行人检测(Pedestrian Detection)资源
行人检测(Pedestrian Detection)资源原文链接 http://hi.baidu.com/susongzhi/item/085983081b006311eafe38e7一、论文CVPR2013年行人检测相关的文章[1] Robust Multi-Resolution Pedestrian Detection in Traffic Scenes转载 2017-06-13 19:50:24 · 1347 阅读 · 0 评论