DeepLearing可视化
马卫飞
上市公司深度学习算法工程师---深度学习,计算机视觉,图像处理,嵌入式开发,android开发
展开
-
【DeepLearning_Visualization】Note1:caffe保存训练日志和accuracy曲线,Loss曲线的可视化
(一)保存caffe的训练日志: 我们打开./caffe/examples/myself/文件夹下面的训练脚本文件:train_quick.sh,然后,在这个脚本文件的后面添加下面的语句:2>&1 | tee examples/myself/cifar_train_log.log //这个是你的log日志文件的保存目录 修改之后的完整的训练脚本文原创 2016-11-03 22:22:11 · 3498 阅读 · 3 评论 -
【DeepLearning_Viaualization】Note2:caffe网络模型的可视化
(一)网络模型的可视化 深度学习的核心就是:数据+网络模型,大量的训练和测试样本和良好的卷积神经网络模型可以保证我们训练出来的模型是实用可靠的. 但是caffe中的网络模型是用prototxt文件进行描述的,这在一定程度上看起来不是很形象化,所以,网络模型的可视化是非常有必要的. caffe中已经为我们提供了一个用于网络模型可视化的python脚本:d原创 2016-11-04 10:34:10 · 806 阅读 · 0 评论 -
目标跟踪相关资源(含模型,最新论文,代码,牛人等)
Visual TrackersECO: Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, Michael Felsberg. "ECO: Efficient Convolution Operators for Tracking." CVPR (2017). [paper] [project] [github]CFNet: Jack V转载 2017-06-07 22:12:38 · 10514 阅读 · 0 评论 -
【深度学习】笔记11:python caffe报错:No module named google.protobuf.internal
1:首先,安装anaconda22:其次,再安装protobuf-master3:最后,再按照下面的介绍进行相应问题的解决,总之一句话,ubuntu16.04下的caffe的安装和可视化环境都是没问题的,不过在安装过程中,有很多问题,需要一个问题一个问题的解决解决ImportError: /home/douxiao/anaconda3/bin/../lib/libstdc++.so原创 2017-07-31 02:16:23 · 2780 阅读 · 0 评论 -
【深度学习】Ubuntu环境下Tensorflow的安装以及与Pycharm的相互配置
************************************************************************************************************************************一 安装Anaconda [1]首先,安装Anaconda3-4.2.0-Linux-x86_64.sh,下载的连接如下所示:原创 2017-11-14 17:14:58 · 9420 阅读 · 0 评论 -
YOLO算法学习及训练
1. YOLO2代码在window下的训练代码: https://github.com/AlexeyAB/darknet原始代码: https://pjreddie.com/darknet/Tips: 1. 虽然要求OPENCV版本为2.4.13或2.4.3以上,VS2015,但实际上改一下代码中opencv和VS的配置信息,低版本也可以,本人版本opencv2.4.10 + VS2013。 2....转载 2018-07-14 17:03:07 · 1495 阅读 · 1 评论 -
基于深度学习的目标检测算法综述
原文链接:http://www.360doc.com/content/18/0424/23/41501311_748500691.shtml导言目标检测的任务是找出图像中所有感兴趣的目标(物体),确定它们的位置和大小,是机器视觉领域的核心问题之一。由于各类物体有不同的外观,形状,姿态,加上成像时光照,遮挡等因素的干扰,目标检测一直是机器视觉领域最具有挑战性的问题。本文将针对目标检测(Object ...转载 2018-07-15 23:07:01 · 4108 阅读 · 0 评论