麻雀算法(Sparrow Search Algorithm,SSA)是2020年由薛建凯等人首次提出的一种新型群体智能优化算法,主要受到麻雀种群觅食行为和反捕食行为的启发,通过模拟麻雀的这些行为,实现了在解空间内的全局优化.以下是其详细介绍:
算法原理
- 发现者(探索者):发现者在种群中负责寻找食物并为整个麻雀种群提供觅食区域和方向,其觅食搜索范围比加入者大。在每次迭代中,当预警值 (r2) 小于安全值 (st) 时,意味着周围没有捕食者,发现者可执行广泛搜索操作;当 (r2\geq st) 时,表示种群中一些麻雀已发现捕食者,所有麻雀需迅速飞到其他安全地方觅食.
- 加入者(追随者):加入者则是利用发现者来获取食物,部分加入者会监视发现者,当发现者找到更好食物时,加入者会与其争夺。若争夺成功,加入者会立即获得该发现者的食物;否则,加入者会按照一定规则进行位置更新,以寻找新的食物来源.
- 警戒者:当麻雀种群意识到危险时会做出反捕食行为,位于种群边缘的麻雀会迅速向安全区域移动,位于种群中间的麻雀则会随机走动,以靠近其它麻雀.
数学模型
- 发现者位置更新公式:(x_{ij}^{t + 1}=\begin{cases}x_{ij}^{t} \cdot \exp\left(-\frac{i}{\alpha \cdot iter_{max}}\right),&r_2<st\x_{ij}^{t}+Q\cdot L,&r_2\geq st\end{cases}) ,其中 (t) 代表当前迭代数,(iter_{max}) 是最大迭代次数,(x_{ij}) 表示第 (i) 个麻雀在第 (j) 维中的位置信息,(\alpha\in(0,1)) 是随机数,(r_2\in(0,1)) 和 (st\in(0.5,1)) 分别表示预警值和安全值,(Q) 是服从正态分布的随机数,(L) 表示一个 (1\times d) 的矩阵,其中该矩阵内每个元素全部为 (1).
- 加入者位置更新公式:(x_{ij}^{t + 1}=\begin{cases}x_{p}{t}+A{+}\cdot\left|x_{p}{t}-x_{ij}{t}\right|,&i\leq\frac{n}{2}\x_{worst}{t}+A\cdot\left|x_{best}{t}-x_{ij}^{t}\right|,&i>\frac{n}{2}\end{cases}) ,其中 (x_{p}) 是目前发现者所占据的最优位置,(x_{worst}) 则表示当前全局最差的位置,(A{+}=AT(A AT){-1}),(A) 表示一个 (1\times d) 的矩阵,其中每个元素随机赋值为 (1) 或 (-1).
- 警戒者位置更新公式:(x_{ij}^{t + 1}=\begin{cases}x_{best}{t}+\beta\cdot\left|x_{ij}{t}-x_{best}^{t}\right| \cdot f_i / (f_g - f_w+\varepsilon),&f_i\neq f_g\x_{ij}{t}+K\cdot\left(\frac{\left|x_{ij}{t}-x_{worst}^{t}\right|}{f_i - f_w+\varepsilon}\right),&f_i = f_g\end{cases}) ,其中 (x_{best}) 是当前的全局最优位置,(\beta) 作为步长控制参数,是服从均值为 (0),方差为 (1) 的正态分布的随机数,(K\in(-1,1)) 是随机数,(f_i) 则是当前麻雀个体的适应度值,(f_g) 和 (f_w) 分别是当前全局最佳和最差的适应度值,(\varepsilon) 是最小的常数,以避免分母出现零.
算法优点
- 全局搜索能力强:通过发现者的广泛搜索和加入者的跟随策略,能够在解空间中进行全面的探索,不易陷入局部最优解,可有效找到全局最优解或接近全局最优解的区域.
- 收敛速度快:相比一些传统的优化算法,麻雀算法在处理复杂的优化问题时,能够更快地收敛到较优的解,从而提高优化效率,减少计算时间和资源消耗.
- 鲁棒性强:对不同类型的优化问题和不同的初始条件都具有较好的适应性,在各种情况下都能保持相对稳定的性能,不容易受到问题规模、维度等因素的影响,具有较强的通用性和实用性.
- 原理简单易实现:该算法的原理基于麻雀的自然行为,易于理解和掌握,其数学模型和计算流程相对简单,不需要复杂的参数设置和先验知识,便于编程实现和应用到实际问题中.
应用领域
- 函数优化:可用于求解各种复杂的函数优化问题,如单峰函数、多峰函数等,能够快速找到函数的最小值或最大值,在数学建模、数据分析等领域有广泛应用.
- 机器学习:在机器学习算法的参数优化方面表现出色,如支持向量机、神经网络等模型的参数调整,通过麻雀算法可以找到更优的参数组合,提高模型的性能和预测精度王维高,魏云冰,滕旭东等.基于麻雀搜索优化支持向量机的短期风机发电功率预测(j).智能计算机与应用,2022,12(01):119-123.
- 工程优化:在机械设计、电力系统、交通运输等工程领域,可用于解决诸如结构优化、调度优化、路径规划等问题,帮助工程师找到更优的设计方案和决策策略,提高工程系统的性能和效率.
- 图像处理:例如图像分割、图像压缩等图像处理任务中,通过优化相关的参数和模型,可提高图像处理的效果和质量.