MT信号四通道相关性预测的Informer模型优化研究

MT信号四通道相关性预测的Informer模型优化研究

1. 研究背景与问题描述

多通道时间序列预测是信号处理领域的重要课题,在通信、生物医学、工业监测等领域有广泛应用。本研究针对MT(大地电磁)信号的四个通道(FYC0712ATS4HY.dat、FYC0712ATS4EY.dat、FYC0712ATS4EX.dat、FYC0712ATS4HX.dat)进行相关性预测任务。当前基于Informer的预测模型已实现对后续25个点的预测,并达到SNR≥10、NCC≥0.98、nRMS≤0.1的性能指标。然而,当预测长度扩展到100个点时,模型性能显著下降。

本研究的目标是优化Informer模型架构和训练策略,使其在保持相同预测精度的前提下,将有效预测长度扩展到100个点。同时,我们需要验证模型在数据缺失情况下的预测能力,并分析四个通道间的相关性如何影响预测性能。

2. 数据预处理与分析

2.1 数据加载与可视化

首先,我们加载四个通道的数据文件并进行初步可视化:

% 数据文件路径
data_files = {
   
   
    'FY
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值