Pandas 的melt的使用

数据分析的时候经常要把宽数据--->>长数据,有点像你们用excel 做透视跟逆透视的过程,直接看下面例子,希望有助于理解.

 

pandas.melt 使用参数:

pandas.melt(frame, id_vars=None, value_vars=None, var_name=None, value_name='value', col_level=None)

参数解释:

frame:要处理的数据集。

id_vars:不需要被转换的列名。

value_vars:需要转换的列名,如果剩下的列全部都要转换,就不用写了。

var_name和value_name是自定义设置对应的列名。

col_level :如果列是MultiIndex,则使用此级别。

 

 

例子:

>>>d = {'col1': ['a','a','a','b','b'], 'col2': [2,2,2,2,2],'col3':['c','c','c','d','d']}
>>>df = pd.DataFrame(data=d)
>>>df

 

 

1、设置 id_vars=['col2'] ,则不需要转换的列是col2 。所以col1跟col3 合并成了一列。

>>>pd.melt(df,id_vars=['col2'])

 

2、设置 id_vars=['col2'],value_vars=['col1'] , 则不需要转换的列是col2 。需要转换的是 col1列 ,拿col3 就不受影响,不展示了。

pd.melt(df,id_vars=['col2'],value_vars=['col1'])

 

 

3、对修改后的列设置新列名。

 

pd.melt(df,id_vars=['col2'],value_vars=['col1'],var_name='hi',value_name='hello')


 

 

使用pandas.melt  进行行转列 ,列转行的操作请看

https://blog.csdn.net/maymay_/article/details/105349956

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:精致技术 设计师:CSDN官方博客 返回首页
评论 2

打赏作者

魔术师_

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值