神经网络入门(神经网络的结构)


什么是神经网络?

首先我们来看百度对神经网络的定义:

人工神经网络(Artificial Neural Network,即ANN ),是20世纪80 年代以来人工智能领域兴起的研究热点。它从信息处理角度对人脑神经元网络进行抽象, 建立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。

顾名思义,神经网络就是尝试模拟大脑神经元的工作,完成完成信息处理和模式识别等任务,如图像识别,语音识别等等。这些任务对大脑而言是显而易见的,但在计算机科学和机器学习领域,却是非常复杂和具有挑战性的。因为没有一个程序能直接编写出模拟神经元的复杂功能,因此研究人员通过设计和训练神经网络来近似模拟这些功能。


神经网络是如何进行识别的?

为了说明这个问题,我们引入猫狗分类(即二分类)这种简单的问题,看看它是如何工作的。

这里有两张黑白的猫狗图片,它们的像素256x256,想象一下你的大脑是如何分辨这两张图片。
猫猫
狗狗
首先,大脑会通过视觉感知来识别图像的不同特征,比如猫的耳朵和胡须,狗的鼻子和嘴巴等。根据这些特征,大脑会给出猫或者狗的相似度(一个值:0%~100%),最终给出我们的判断:是猫还是狗。

同理,神经网络也应该具有类似的结构,能够提取和识别图像特征,并最终给出各种分类的相似度(在本例中只有两类,即猫或者狗)。

接着我们给出猫狗识别的简单的神经网络结构(这里采用的是全连接神经网络FCNN,而并非CNN)。
如果你曾经了解过神经网络,你应该对下面的图很熟悉。
猫狗神经网络结构

但如果你是第一次见,也没关系,我将以猫狗识别为例子,解释这张图每一项的具体含义。

首先,我们将图片展开,将图片的每一行拼接到一起,形成了256*256=65536个像素点组成的列,我们称该列中的每个元素为一个神经元,并称该列为输入层(即输入图片的数据)。
图片展开

很明显,它共有256*256=65536个神经元,可以暂时将它想象成我们眼睛的感光细胞,向我们大脑传输了最原始图片信息。现假设每个神经元有一个范围为0.0~1.0的感光数据(神经元的数据称为激活值),代表该像素点的亮度值,越接近1.0说明该像素点越亮,反之越暗。

为了识别该图片是猫还是狗,大脑会识别各种特征,如该动物的眼睛,鼻子,耳朵等等。因此我们还需要隐藏层(可以不止一层,这里为了方便从一层讲起),用于模仿大脑识别图片的各种特征。
带数值的猫狗神经网络结构
如上图所示,同样为了方便,我们只为隐藏层的设定三个神经元,假设其分别代表三个特征的相似度:狗的耳朵、猫的耳朵和猫的眼睛(在真实的神经网络中,往往是黑箱模型,即我们并不知道哪个神经元对应了哪些特征)。

根据隐藏层神经元的相似度值,我们就能计算出猫和狗的概率。拥有越多猫的特征,那么其越可能是猫,反之为狗。这里是二分类问题,因此我们通常使用softmax函数将输出概率控制到0.0~1.0区间内,方便判断。上图所示的输出中,有0.9的概率为猫,有0.1的概率为狗。

那么这些线又是干啥的呢?
神经网络结构中的线
这些线代表了上一层数据的流向,即下一层的数据是根据哪些上层数据计算得来的。


用数学表达式来描述神经网络结构

看完上一章节,想必你已经了解了神经网络的大致原理和结构,那么我们现在来讨论一下每一层神经元的值是如何得到的。此外,在本章节我们还要讨论如何用数学表达式来描述该结构。
注意:本章节需要用到线性代数的知识,如果不知道矩阵是什么,那还是先去百度上了解一下吧。

输入层到隐藏层神经元激活值的计算

我们假设输入层的神经元激活值分别为 x 1 , x 2 , x 3 , ⋯   , x 65535 x_1,x_2,x_3,\cdots,x_{65535} x1,x2,x3,,x65535 ,则可以用矩阵:
X = ( x 1 x 2 x 3 ⋯ x 65535 ) X= \begin{pmatrix} x_1 & x_2 & x_3 & \cdots & x_{65535} \\ \end{pmatrix} X=(x1x2x3x65535)
其中 X X X 表示输入的值。
同理,又输入层变换得到的隐藏层的所有激活值可表示为矩阵:
H = ( h 1 h 2 h 3 ) H= \begin{pmatrix} h_1 & h_2 & h_3 \\ \end{pmatrix} H=(h1h2h3)
输入层和隐藏层
图中的每一条线都代表乘以一个权重(Weight),如 w 11 w_{11} w11。那么隐藏层第一个神经元的激活值可以由以下公式计算:
h 0 = w 1 , 1 ∗ x 0 + w 2 , 1 ∗ x 1 + w 3 , 1 ∗ x 2 + ⋯ + w 65536 , 1 ∗ x 65535 h_0=w_{1,1}*x_0+w_{2,1}*x_1+w_{3,1}*x_2+\cdots+w_{65536,1}*x_{65535} h0=w1,1x0+w2,1x1+w3,1x2++w65536,1x65535
为了保证数值尽量在0.0~1.0(为了方便计算)之间,我们还引入了偏差(Bias),如 b 1 b_1 b1。同时再加上激活函数,这里采用Sigmoid,用 σ ( x ) \sigma(x) σ(x)表示:
σ ( x ) = 1 1 + e − x \sigma(x)=\frac{1}{1+e^{-x}} σ(x)=1+ex1
此时:
h 0 = σ ( w 1 , 1 ∗ x 0 + w 2 , 1 ∗ x 1 + w 3 , 1 ∗ x 2 + ⋯ + w 65536 , 1 ∗ x 65535 + b 1 ) h_0=\sigma(w_{1,1}*x_0+w_{2,1}*x_1+w_{3,1}*x_2+\cdots+w_{65536,1}*x_{65535}+b_1) h0=σ(w1,1x0+w2,1x1+w3,1x2++w65536,1x65535+b1)
那么对于所有的 h i ( i = 1 , 2 , 3 ) h_i(i=1,2,3) hi(i=1,2,3)如何表示呢?聪明的你肯定发现了,可以用矩阵来表示权重(W)偏差(B)
W = ( w 1 , 1 w 1 , 2 w 1 , 3 w 2 , 1 w 2 , 2 w 2 , 3 ⋮ ⋮ ⋮ w 65536 , 1 w 65536 , 2 w 65536 , 3 ) W= \begin{pmatrix} w_{1,1} & w_{1,2} & w_{1,3} \\ w_{2,1} & w_{2,2} & w_{2,3} \\ \vdots & \vdots & \vdots \\ w_{65536,1} & w_{65536,2} & w_{65536,3} \\ \end{pmatrix} W= w1,1w2,1w65536,1w1,2w2,2w65536,2w1,3w2,3w65536,3
B = ( b 1 b 2 b 3 ) B= \begin{pmatrix} b_1 & b_2 & b_3 \\ \end{pmatrix} B=(b1b2b3)
好了,很明显,由矩阵的乘法我们可以得到:
H = σ ( X ⋅ W + B ) H=\sigma(X \cdot W + B) H=σ(XW+B)
这样我们就完美的解决了输入层到隐藏层激活值的计算问题。

每一层之间的公式关系

根据输入层到隐藏层之间的公式关系,我们可以仿照着推出隐藏层到输出层之间的关系。
隐藏层到输出层

设输出的两个值 y 0 y_0 y0, y 1 y_1 y1分别代表该图片的动物是猫和是狗的概率(显然概率范围在0.0~1.0之间),我们用矩阵表示:
Y = ( y 0 y 1 ) Y= \begin{pmatrix} y_0 & y_1 \\ \end{pmatrix} Y=(y0y1)
在这里为了保证 y 0 y_0 y0, y 1 y_1 y1在0.0~1.0之间,我们采用softmax函数,引入权重和偏差,则:
Y = s o f t m a x ( W ′ ⋅ H + B ′ ) Y=softmax(W' \cdot H + B') Y=softmax(WH+B)
其中权重和偏置分别为:
W ′ = ( w 1 , 1 w 1 , 2 w 2 , 1 w 2 , 2 w 3 , 1 w 3 , 2 ) W'= \begin{pmatrix} w_{1,1} & w_{1,2} \\ w_{2,1} & w_{2,2} \\ w_{3,1} & w_{3,2} \\ \end{pmatrix} W= w1,1w2,1w3,1w1,2w2,2w3,2
B ′ = ( b 1 b 2 b 3 ) B'= \begin{pmatrix} b_1 & b_2 & b_3 \\ \end{pmatrix} B=(b1b2b3)
那么我们此时就得到了从输入层到输出层的完整函数表达式:
Y = s o f t m a x ( W ′ ⋅ σ ( X ⋅ W + B ) + B ′ ) Y=softmax(W' \cdot \sigma(X \cdot W + B) + B') Y=softmax(Wσ(XW+B)+B)

权重和偏差的确定和意义

根据上述的公式,我们给出输入的图片,就能得到输出猫或者狗的概率。要保证输出结果的正确性,那么必须确定参数 W , B , W ′ , B ′ W,B,W',B' W,B,W,B
我们要知道,确定神经网络中的权重和偏差是一项至关重要的任务,因为这些参数直接影响模型的性能和准确度。通常,这些参数是通过一种称为 训练(training) 的过程来确定的。在这个过程中,我们使用大量的已知标签(如已知是猫或狗的图片)来调整网络的参数,使得网络的输出尽可能接近实际标签。
这些调整的过程通常涉及到以下几个步骤(在这里由于只是介绍,就不在过多赘述,将在以后的章节中详细解释):

  1. 前向传播(Forward Propagation)
    前向传播是指从输入层开始,通过隐藏层,直到输出层的计算过程。在每一层中,神经元的激活值会被计算出来,并传递到下一层,直到最终得到输出。

  2. 损失函数(Loss Function)
    损失函数用来衡量模型的预测值与实际值之间的差异。在猫狗分类问题中,常用的损失函数是交叉熵损失(Cross-Entropy Loss)。

  3. 反向传播(Backpropagation)
    反向传播是调整权重和偏差的关键步骤。通过计算损失函数相对于每个参数的梯度,我们可以知道如何调整这些参数以减少损失。具体来说,反向传播使用链式法则(Chain Rule)来计算梯度,然后根据这些梯度更新参数。更新规则通常是使用梯度下降算法(Gradient Descent Algorithm)。

  4. 梯度下降算法(Gradient Descent Algorithm)
    梯度下降算法是通过迭代来逐步优化损失函数。具体来说,它会计算每个参数的梯度,然后沿着梯度的反方向更新参数,以减小损失。


  • 9
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值