均值和方差概念

之所以要记录均值和方差的概念,是因为在学习数字图像处理的时候,碰到了这两个概念,突然发现忘记了。后来通过google搜索,才慢慢回忆起这是高中数学的知识。

当然均值还是知道的,均值就是一组数据的平均值,比如如下一组数据:


机床甲的均值计算如下:


既然有了均值,那为啥还需要方差呢,我们再来看机床乙的均值:


它们的均值都40,那怎么评价哪个机床生产的零件好呢,就需要用到这里的方差。

方差它是用来描述一组数据的波动大小,如果方差越大,说明数据波动越大,如果方差较小,说明数据波动较小。

我们来看方差如何计算:

设有一组数据,它们的平均值为,则方差为:


根据这个公式我们来计算上面两组数据的方差:



从0.026>0.008可以看出,机床甲生产零件直径比机床乙生产零件直径波动要大。


另外补充一点标准差概念,标准差计算公司如下:


其实标准差就是方差开方。




### 均值方差概念 #### 均值 均值是统计学中最基础的指标之一,用来表示一组数据的中心位置。对于一个包含 \( n \) 个样本的数据集 \( X = \{x_1, x_2, ..., x_n\} \),其均值可以由下述公式计算得出: \[ \mu = \frac{\sum_{i=1}^{n} x_i}{n} \] 其中,\( \mu \) 表示均值,\( x_i \) 是第 \( i \) 个样本值,而 \( n \) 则代表总样本数量[^1]。 #### 方差 方差是用来衡量数据集中各个数值偏离均值的程度的一个重要指标。它的定义为各数据与其平均数之差的平方除以总数目。具体来说,对于上述同样的数据集 \( X \),其方差可按如下方式计算: \[ \sigma^2 = \frac{\sum_{i=1}^{n}(x_i-\mu)^2}{n} \] 这里,\( \sigma^2 \) 即为我们所求得的方差,它反映了数据波动性的大小;当方差越小时,说明这组数据更紧密地围绕着它们的均值分布。 另外,在实际应用过程中也常会遇到另一种形式的标准差 (Standard Deviation),它是对方差开根号后的结果: \[ \sigma = \sqrt{\sigma^2} \] 标准差同样能够很好地反映数据离散程度,并且由于单位一致更容易被解释理解[^3]。 以下是利用 Python 实现均值方差计算的小例子: ```python import numpy as np data = [2, 4, 6, 8, 10] mean_value = np.mean(data) variance_value = np.var(data) print(f"Mean Value: {mean_value}") print(f"Variance Value: {variance_value}") ``` 此代码片段展示了如何通过 NumPy 库快速简便地获取列表 `data` 的均值方差。 ### 计算过程总结 综上所述,无论是手动还是借助编程工具来完成运算操作,掌握好这两个核心公式的运用都是至关重要的一步。只有深刻理解熟练掌握了这些基础知识之后,才能更好地迈向更高层次的数据分析领域。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值