概率论:均值、标准差、方差、协方差、矩

一、均值

1.1 离散情况:

X ‾ = ∑ i = 1 n X i n \overline{X}={\sum_{i=1}^nX_i\over n} X=ni=1nXi

二、标准差

S = ∑ i = 1 n ( x i − X ‾ ) 2 n − 1 S=\sqrt{{\sum_{i=1}^n(x_i-\overline{X})^2\over n-1}} S=n1i=1n(xiX)2

三、方差

1.1 样本方差:

S 2 = ∑ i = 1 n ( x i − X ‾ ) 2 n − 1 S^2={\sum_{i=1}^n(x_i-\overline{X})^2\over n-1} S2=n1i=1n(xiX)2

1.2 均值的方差

D ( x ‾ ) = D ( 1 n ∑ x i ) = 1 n 2 ∑ D ( x i ) = 1 n 2 ⋅ n σ 2 = σ 2 n D(\overline{x})=D({1\over n}\sum x_i)={1\over n^2}\sum D(x_i)={1\over n^2}\centerdot n\sigma^2={\sigma^2\over n} D(x)=D(n1xi)=n21D(xi)=n21nσ2=nσ2

1.3 方差的性质
  1. 设C为常数, D ( C ) = 0 D(C)=0 D(C)=0
  2. 设X是随机变量,C是常数,则有: D ( C X ) = C 2 D ( X ) , D ( X + C ) = D ( X ) D(CX)=C^2D(X),D(X+C)=D(X) D(CX)=C2D(X),D(X+C)=D(X)
  3. 设X与Y是两个随机变量,则: D ( X ± Y ) = D ( X ) + D ( Y ) ± 2 C o v ( X , Y ) D(X\pm Y)=D(X)+D(Y)\pm2Cov(X,Y) D(X±Y)=D(X)+D(Y)±2Cov(X,Y)

四、协方差

4.1 为什么需要协方差
4.1.1 定义

标准差和方差一般是用来描述一维数据的,但现实生活中我们常常会遇到含有多维数据的数据集。最简单的是上学时我们要统计多个学科的考试成绩,面对这样的数据集,我们当然可以按照每一维独立的计算其方差,但是我们想了解的更多,比如数学成绩和物理成绩是不是有一定的相关关系,协方差就是这样一种用来度量两个随机变量关系的统计量。
我们可以仿照方差的定义:
v a r ( X ) = ∑ i = 1 n ( X i − X ‾ ) ( X i − X ‾ ) n − 1 var(X)={\sum_{i=1}^n(X_i-\overline{X})(X_i-\overline{X})\over n-1} var(X)=n1i=1n(XiX)(XiX)
来定义协方差如下(离散):
c o v ( X , Y ) = ∑ i = 1 n ( X i − X ‾ ) ( Y i − Y ‾ ) n − 1 = E ( x y ) − E ( x ) E ( y ) cov(X,Y)={\sum_{i=1}^n(X_i-\overline{X})(Y_i-\overline{Y})\over n-1}=E(xy)-E(x)E(y) cov(X,Y)=n1i=1n(XiX)(YiY)=E(xy)E(x)E(y)

协方差的结果如果为正值,则说明两者是正相关的(从协方差可以引出“相关系数”的定义);如果结果为负值,则说明两者是负相关;如果为0,则说明两者之间没有关系,就是统计上的“相互独立”。

从协方差的定义上可以看出一些显而易见的性质,如:

  1. c o v ( X , X ) = v a r ( X ) cov(X,X)=var(X) cov(X,X)=var(X)
  2. c o v ( X , Y ) = c o v ( Y , X ) cov(X,Y)=cov(Y,X) cov(X,Y)=cov(Y,X)
4.1.2 关于协方差的图解:

首先将x,y做去均值处理,此时 x ‾ = y ‾ = 0 \overline{x}=\overline{y}=0 x=y=0,所以此时x和y之间的协方差:
c o v [ x , y ] = E [ ( x − x ‾ ) ( y − y ‾ ) ] = E [ x ⋅ y ] cov[x,y]=E[(x-\overline{x})(y-\overline{y})]=E[x\centerdot y] cov[x,y]=E[(xx)(yy)]=E[xy]

  • 如果x和y的联合分布多位于一三象限,则 x ⋅ y x\centerdot y xy多为正数,此时协方差为正,x和y正相关:
    在这里插入图片描述
  • 如果x和y的联合分布多分布在二四象限,此时 x ⋅ y x\centerdot y xy多为负数,则协方差为负,x和y负相关
    在这里插入图片描述
  • 如果x和y几乎均匀的分布在所有象限中,则 x ⋅ y x\centerdot y xy有正有负,均值接近于0,说明x和y之间没有相关性(只是说明没有线性相关):
    在这里插入图片描述
4.1.3 协方差的性质
  • C o v ( X , Y ) = C o v ( Y , X ) Cov(X,Y)=Cov(Y,X) Cov(X,Y)=Cov(Y,X)
  • C o v ( a X , b Y ) = a b C o v ( X , Y ) Cov(aX,bY)=abCov(X,Y) Cov(aX,bY)=abCov(X,Y)
  • C o v ( X 1 + X 2 , Y ) = C o v ( X 1 , Y ) + C o v ( X 2 , Y ) Cov(X_1+X_2,Y)=Cov(X_1,Y)+Cov(X_2,Y) Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)
4.2 协方差矩阵

前面提到的问题是典型的二维问题,而协方差也只能处理二维问题,维数多了自然就需要计算多个协方差,这时我们会想到利用矩阵来组织这些数据(协方差矩阵就是用来计算各维度之间的相关性):

4.2.1 定义

将二维随机变量 ( X 1 , X 2 ) (X_1,X_2) (X1,X2)的四个二阶中心距
c 11 = E { [ X 1 − E ( X 1 ) ] 2 } c_{11}=E\{[X_1-E(X_1)]^2\} c11=E{[X1E(X1)]2}
c 12 = E { [ X 1 − E ( X 1 ) ] [ X 2 − E ( X 2 ) ] } c_{12}=E\{[X_1-E(X_1)][X_2-E(X_2)]\} c12=E{[X1E(X1)][X2E(X2)]}
c 21 = E { [ X 2 − E ( X 2 ) ] [ X 1 − E ( X 1 ) ] } c_{21}=E\{[X_2-E(X_2)][X_1-E(X_1)]\} c21=E{[X2E(X2)][X1E(X1)]}
c 22 = E { [ X 2 − E ( X 2 ) ] 2 } c_{22}=E\{[X_2-E(X_2)]^2\} c22=E{[X2E(X2)]2}
排成矩阵的形式:
( c 11 c 12 c 21 c 22 ) \begin {pmatrix} c_{11}&c_{12}\\c_{21}&c_{22} \end {pmatrix} (c11c21c12c22)
称此矩阵为 ( X 1 , X 2 ) (X_1,X_2) (X1,X2)的协方差矩阵

类似定义n维随机变量 ( X 1 , X 2 , . . . , X n ) (X_1,X_2,...,X_n) (X1,X2,...,Xn)的协方差矩阵:
若:
c i j = C o v ( X i , X j ) = E { [ X i − E ( X i ) ] [ X j − E ( X j ) ] } i , j = 1 , 2 , . . . , n c_{ij}=Cov(X_i,X_j)=E\{[X_i-E(X_i)][X_j-E(X_j)]\}\quad i,j=1,2,...,n cij=Cov(Xi,Xj)=E{[XiE(Xi)][XjE(Xj)]}i,j=1,2,...,n
都存在,称矩阵:
C = ( c 11 c 12 … c 1 n c 21 c 22 … c 2 n ⋮ ⋮ ⋱ ⋮ c n 1 c n 2 … c n n ) C=\begin {pmatrix} c_{11}&c_{12} &\dots &c_{1n}\\ c_{21}&c_{22}&\dots &c_{2n}\\ \vdots &\vdots&\ddots&\vdots\\ c_{n1}&c_{n2}&\dots &c_{nn} \end {pmatrix} C=c11c21cn1c12c22cn2c1nc2ncnn
( X 1 , X 2 , . . . , X n ) (X_1,X_2,...,X_n) (X1,X2,...,Xn)的协方差矩阵

4.2.2 性质

协方差矩阵是半正定矩阵
证明:
一组随机变量,共n个:
X = ( X 1 , X 2 , . . . , X n ) T X=(X_1,X_2,...,X_n)^T X=(X1,X2,...,Xn)T
设 协 方 差 矩 阵 为 Σ , 对 任 意 向 量 y : 设协方差矩阵为\varSigma,对任意向量y: Σ,y
y T Σ y = y T E [ ( X − μ ) ( X − μ ) T ] y y^T\varSigma y=y^TE[(X-\mu)(X-\mu)^T]y yTΣy=yTE[(Xμ)(Xμ)T]y
= E [ y T ( X − μ ) ( X − μ ) T ) y ] \quad\quad=E[y^T(X-\mu)(X-\mu)^T)y] =E[yT(Xμ)(Xμ)T)y]
= E [ ( ( X − μ ) T y ) T ( ( X − μ ) T ) y ) ] \quad\quad=E[((X-\mu)^Ty)^T((X-\mu)^T)y)] =E[((Xμ)Ty)T((Xμ)T)y)]
= E [ ∣ ∣ ( X − μ ) T y ∣ ∣ 2 ] ≥ 0 \quad\quad=E[||(X-\mu)^Ty||^2]\ge0 =E[(Xμ)Ty2]0

协方差矩阵是实对称矩阵

五、矩

5.1 混合矩和混合中心矩

设X和Y是随机变量
若:
E ( X k Y L ) K , L = 1 , 2 , . . . E(X^kY^L)\quad K,L=1,2,... E(XkYL)K,L=1,2,...
存在,则称它为X和Y的K+L阶混合(原点)矩,
若:
E { [ X − E ( X ) ] k [ Y − E ( Y ) ] k } E{\{[X-E(X)]^k[Y-E(Y)]^k\}} E{[XE(X)]k[YE(Y)]k}
存在,则称它为X和Y的K+L阶混合中心矩。
可以知道协方差cov(X,Y)是X和Y的二阶混合中心矩。

  • 2
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值