均值、方差、协方差、协方差矩阵

1: 菜鸡记录一下这些知识,这些本就是大二学完概率论就应该掌握并且理解的基本知识,奈何现在马上就要研三的我居然经常没有理解透彻 不知道有没有像我一样的菜的抠脚的人 哈哈 下面直接进入正题 可能会有一些很多错误 纯粹记录一下 给自己以后复习观看

先放上几个学习的链接 讲的很好 可以去看一下不会的时候
哔哩哔哩视频讲解 均值 方差 标准差 协方差
哔哩哔哩视频讲解 协方差矩阵
CSDN博客介绍
博客介绍
博客介绍
博客介绍

1. 均值/期望
这个比较简单理解 一个随机变量x ,样本数量为n 那么其均值为: x ‾ = ∑ i = 1 n x i n \overline{x} = \frac {\sum_{i=1}^{n} x_i} {n} x=ni=1nxi
均值就是一个随机变量采集了一些样本 然后累加求和 只是反应了随机变量在采集的这些样本下的一个平均值。

2. 方差
这个相对来说就有点意思了:方差的大小反应了这个随表变量采集的样本的 波 动 程 度 \color{red}{波动程度} ,计算公式如下 s 2 = ∑ i = 1 n ( x i − x ‾ ) n − 1 {s^2} = \frac{\sum_{i=1}^{n}( x_i - \overline{x})} {n-1} s2=n1i=1n(xix)这里稍微注释一下 这里加上平方纯粹为了怕正负值抵消,所以加个平方让其都变成正的。

3. 标准差
标准差就是方差开方,他反应的是样本集合中的样本点到平均值之间的距离。理论上来说,方差也可以啊 ,但是为啥又出了一个标准差呢,应该就是为了把数量级搞到同一个上面,方便比较观察,公式如下: s = ∑ i = 1 n ( x i − x ‾ ) n − 1 {s} =\sqrt{ \frac{\sum_{i=1}^{n}( x_i - \overline{x})} {n-1}} s=n1i=1n(xix)

4. 协方差
协方差主要用来表示不同变量之间是否存在相互的关系。公式计算如下 这里表示的有些混乱 上面随机变量用的小写 这里用的大写
c o v ( X 1 , X 2 ) = E { ( X 1 − X 1 ‾ ) ( X 2 − X 2 ‾ ) } cov(X1,X2) = E \{ (X1- \overline{X1})(X2- \overline{X2}) \} cov(X1,X2)=E{(X1X1)(X2X2)}
c o v ( X 1 , X 2 ) = ∑ i = 1 n ( X 1 i − X 1 ‾ ) ( X 2 i − X 2 ‾ ) n − 1 cov(X1,X2) = \frac{\sum_{i=1}^{n}( X1_i - \overline{X1})(X2_i - \overline{X2} )} {n-1} cov(X1,X2)=n1i=1n(X1iX1)(X2iX2)

我对这两个公式疑惑了 好久,最后发现 真傻X 下面那个不就是上面那个的具体实现形式吗!!!!!
这里放一个例子说明一下 ,也为自己愚蠢的脑子买单。
[ X 1 X 2 5 − 1 4 − 2 5 − 9 16 − 2 8 − 1 ] \begin{bmatrix}X1 & X2\\5 & -1 \\ 4 & -2 \\ 5 & -9\\ 16 & -2\\ 8 & -1\\\end{bmatrix} X1545168X212921
这里首先根据样本值计算出来 X1和X2的平均值,然后根据公式
c o v ( X 1 , X 2 ) = E { ( X 1 − X 1 ‾ ) ( X 2 − X 2 ‾ ) } = E { ( [ 5 4 5 16 8 ] − [ 9.5 9.5 9.5 9.5 9.5 ] ) ∗ ( [ − 1 − 2 − 9 − 2 − 1 ] − [ − 3 − 3 − 3 − 3 − 3 ] ) } cov(X1,X2) = E \{ (X1- \overline{X1})(X2- \overline{X2}) \} = E \{( \begin{bmatrix}5 \\ 4 \\ 5 \\ 16 \\ 8 \\\end{bmatrix} - \begin{bmatrix} 9.5 \\ 9.5 \\ 9.5\\ 9.5\\ 9.5\\\end{bmatrix}) * ( \begin{bmatrix}-1 \\ -2 \\ -9 \\ -2 \\ -1 \\\end{bmatrix} - \begin{bmatrix} -3 \\ -3 \\ -3\\ -3\\ -3\\\end{bmatrix}) \} cov(X1,X2)=E{(X1X1)(X2X2)}=E{(5451689.59.59.59.59.5)(1292133333)}
注意上述公式中是点乘 也就是对应项相乘就行啦 然后就是一列数 加起来 求和 取平均即可 ,这里出来的应该是2*2的协方差矩阵 这里只是演示一下。其实根本不是这么麻烦 但是因为我当时陷入死胡同了 怎么也行想不明白这个公式是怎么计算的 所以写了一下这个。也不知道对不对 但是现在感觉流畅多了。
其实可以直接按照
c o v ( X 1 , X 2 ) = E { ( X 1 − X 1 ‾ ) ( X 2 − X 2 ‾ ) } = ∑ i = 1 n ( X 1 i − X 1 ‾ ) ( X 2 i − X 2 ‾ ) n − 1 cov(X1,X2) = E \{ (X1- \overline{X1})(X2- \overline{X2}) \} = \frac{\sum_{i=1}^{n}( X1_i - \overline{X1})(X2_i - \overline{X2} )} {n-1} cov(X1,X2)=E{(X1X1)(X2X2)}=n1i=1n(X1iX1)(X2iX2)
这样算真的很方便 并且直接用后面的那个公式算 会更加清晰明了。就是每次对应的样本值减去相应随机变量的均值 再相乘

5:协方差矩阵
协方差多了自然就成了协方差矩阵了 ,必须要明确一点,协方差矩阵计算的是不同维度之间的协方差,而不是不同样本之间的。因为计算样本点没啥意思啊 我们要的是不同随机变量之间的相互关系,这里不想写了 复制来了一个别人的图片
这里需要注意一下 下面公式中的X代表是众多随机变量的集合 ,是一个列向量 。在往下 X 1 X_1 X1也是一个列向量 但是这个列向量中不是随机变量 而是每个随机变量的采样值
在这里插入图片描述
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值