1: 菜鸡记录一下这些知识,这些本就是大二学完概率论就应该掌握并且理解的基本知识,奈何现在马上就要研三的我居然经常没有理解透彻 不知道有没有像我一样的菜的抠脚的人 哈哈 下面直接进入正题 可能会有一些很多错误 纯粹记录一下 给自己以后复习观看
先放上几个学习的链接 讲的很好 可以去看一下不会的时候
哔哩哔哩视频讲解 均值 方差 标准差 协方差
哔哩哔哩视频讲解 协方差矩阵
CSDN博客介绍
博客介绍
博客介绍
博客介绍
1. 均值/期望
这个比较简单理解 一个随机变量x ,样本数量为n 那么其均值为:
x
‾
=
∑
i
=
1
n
x
i
n
\overline{x} = \frac {\sum_{i=1}^{n} x_i} {n}
x=n∑i=1nxi
均值就是一个随机变量采集了一些样本 然后累加求和 只是反应了随机变量在采集的这些样本下的一个平均值。
2. 方差
这个相对来说就有点意思了:方差的大小反应了这个随表变量采集的样本的
波
动
程
度
\color{red}{波动程度}
波动程度 ,计算公式如下
s
2
=
∑
i
=
1
n
(
x
i
−
x
‾
)
n
−
1
{s^2} = \frac{\sum_{i=1}^{n}( x_i - \overline{x})} {n-1}
s2=n−1∑i=1n(xi−x)这里稍微注释一下 这里加上平方纯粹为了怕正负值抵消,所以加个平方让其都变成正的。
3. 标准差
标准差就是方差开方,他反应的是样本集合中的样本点到平均值之间的距离。理论上来说,方差也可以啊 ,但是为啥又出了一个标准差呢,应该就是为了把数量级搞到同一个上面,方便比较观察,公式如下:
s
=
∑
i
=
1
n
(
x
i
−
x
‾
)
n
−
1
{s} =\sqrt{ \frac{\sum_{i=1}^{n}( x_i - \overline{x})} {n-1}}
s=n−1∑i=1n(xi−x)
4. 协方差
协方差主要用来表示不同变量之间是否存在相互的关系。公式计算如下 这里表示的有些混乱 上面随机变量用的小写 这里用的大写
c
o
v
(
X
1
,
X
2
)
=
E
{
(
X
1
−
X
1
‾
)
(
X
2
−
X
2
‾
)
}
cov(X1,X2) = E \{ (X1- \overline{X1})(X2- \overline{X2}) \}
cov(X1,X2)=E{(X1−X1)(X2−X2)}
c
o
v
(
X
1
,
X
2
)
=
∑
i
=
1
n
(
X
1
i
−
X
1
‾
)
(
X
2
i
−
X
2
‾
)
n
−
1
cov(X1,X2) = \frac{\sum_{i=1}^{n}( X1_i - \overline{X1})(X2_i - \overline{X2} )} {n-1}
cov(X1,X2)=n−1∑i=1n(X1i−X1)(X2i−X2)
我对这两个公式疑惑了 好久,最后发现 真傻X 下面那个不就是上面那个的具体实现形式吗!!!!!
这里放一个例子说明一下 ,也为自己愚蠢的脑子买单。
[
X
1
X
2
5
−
1
4
−
2
5
−
9
16
−
2
8
−
1
]
\begin{bmatrix}X1 & X2\\5 & -1 \\ 4 & -2 \\ 5 & -9\\ 16 & -2\\ 8 & -1\\\end{bmatrix}
⎣⎢⎢⎢⎢⎢⎢⎡X1545168X2−1−2−9−2−1⎦⎥⎥⎥⎥⎥⎥⎤
这里首先根据样本值计算出来 X1和X2的平均值,然后根据公式
c
o
v
(
X
1
,
X
2
)
=
E
{
(
X
1
−
X
1
‾
)
(
X
2
−
X
2
‾
)
}
=
E
{
(
[
5
4
5
16
8
]
−
[
9.5
9.5
9.5
9.5
9.5
]
)
∗
(
[
−
1
−
2
−
9
−
2
−
1
]
−
[
−
3
−
3
−
3
−
3
−
3
]
)
}
cov(X1,X2) = E \{ (X1- \overline{X1})(X2- \overline{X2}) \} = E \{( \begin{bmatrix}5 \\ 4 \\ 5 \\ 16 \\ 8 \\\end{bmatrix} - \begin{bmatrix} 9.5 \\ 9.5 \\ 9.5\\ 9.5\\ 9.5\\\end{bmatrix}) * ( \begin{bmatrix}-1 \\ -2 \\ -9 \\ -2 \\ -1 \\\end{bmatrix} - \begin{bmatrix} -3 \\ -3 \\ -3\\ -3\\ -3\\\end{bmatrix}) \}
cov(X1,X2)=E{(X1−X1)(X2−X2)}=E{(⎣⎢⎢⎢⎢⎡545168⎦⎥⎥⎥⎥⎤−⎣⎢⎢⎢⎢⎡9.59.59.59.59.5⎦⎥⎥⎥⎥⎤)∗(⎣⎢⎢⎢⎢⎡−1−2−9−2−1⎦⎥⎥⎥⎥⎤−⎣⎢⎢⎢⎢⎡−3−3−3−3−3⎦⎥⎥⎥⎥⎤)}
注意上述公式中是点乘 也就是对应项相乘就行啦 然后就是一列数 加起来 求和 取平均即可 ,这里出来的应该是2*2的协方差矩阵 这里只是演示一下。其实根本不是这么麻烦 但是因为我当时陷入死胡同了 怎么也行想不明白这个公式是怎么计算的 所以写了一下这个。也不知道对不对 但是现在感觉流畅多了。
其实可以直接按照
c
o
v
(
X
1
,
X
2
)
=
E
{
(
X
1
−
X
1
‾
)
(
X
2
−
X
2
‾
)
}
=
∑
i
=
1
n
(
X
1
i
−
X
1
‾
)
(
X
2
i
−
X
2
‾
)
n
−
1
cov(X1,X2) = E \{ (X1- \overline{X1})(X2- \overline{X2}) \} = \frac{\sum_{i=1}^{n}( X1_i - \overline{X1})(X2_i - \overline{X2} )} {n-1}
cov(X1,X2)=E{(X1−X1)(X2−X2)}=n−1∑i=1n(X1i−X1)(X2i−X2)
这样算真的很方便 并且直接用后面的那个公式算 会更加清晰明了。就是每次对应的样本值减去相应随机变量的均值 再相乘
5:协方差矩阵
协方差多了自然就成了协方差矩阵了 ,必须要明确一点,协方差矩阵计算的是不同维度之间的协方差,而不是不同样本之间的。因为计算样本点没啥意思啊 我们要的是不同随机变量之间的相互关系,这里不想写了 复制来了一个别人的图片
这里需要注意一下 下面公式中的X代表是众多随机变量的集合 ,是一个列向量 。在往下
X
1
X_1
X1也是一个列向量 但是这个列向量中不是随机变量 而是每个随机变量的采样值