1 引言
MUSIC算法本质上是对信号进行“正交分解”的过程。一般地,MUSIC算法用于DOA估计,因此本文首先阐述在这种应用场景下对MUSIC算法的相关理解;接着,分析网络上一些仿真代码的不合理性;最后,给出MUSIC在参数估计领域的其他应用。
2 基本算法流程(一维)与代码(搜索版本,非快速运算)
假设线阵有 M M M个阵元,某时刻 t t t各个阵元接收到的复信号组成一个“快拍”,记为 y ( t ) ∈ C M \boldsymbol{y}(t) \in \mathbb{C}^M y(t)∈CM,则 N N N个快拍的接收信号可以表示为 Y ∈ C M × N \boldsymbol{Y} \in \mathbb{C}^{M \times N} Y∈CM×N,且 Y = [ y ( 1 f s ) , ⋯ , y ( N f s ) ] \boldsymbol{Y}=\left[ \boldsymbol{y}(\frac{1}{f_s}), \cdots, \boldsymbol{y}(\frac{N}{f_s})\right] Y=[y(fs1),⋯,y(fsN)]。其中, f s f_s fs为A/D的采样率。
MUSIC算法可以简单地划分为以下三个步骤:
a ) 估计快拍自相关,进而分析信号的“空间相关性”(一般用“平均值”近似“均值”):
R = E [ y y H ] ≈ R ^ = Y Y H N \boldsymbol{R} = E\left[ \boldsymbol{y}\boldsymbol{y}^H \right] \approx \boldsymbol{\hat{R}} = \frac{\boldsymbol{Y}\boldsymbol{Y}^H}{N} R=E[yyH]≈R^=