训练py-faster rcnn的两种方式以及自己模型的迁移学习

本文介绍了Faster R-CNN的两种训练方法,包括交替优化(alternating optimization)的四个阶段以及近似联合训练(approximate joint training)的参数配置,并详细阐述了如何进行模型迁移学习。
摘要由CSDN通过智能技术生成

faster rcnn训练方式有两种,一种是交替优化方法(alternating optimization),即训练两个网络,一个是rpn,一个是fast rcnn,总计两个stage,每个stage各训练一次rpn和fast rcnn。另外一种训练方式为近似联合训练(approximate joint training),也称end to end的训练方式,训练过程中只训练一个权重网络,训练速度有可观的提升,而训练精度不变。

1. alternating optimization

alternating optimization训练过程分如下四个小阶段:

1. stage 1 RPN proposals

2. stage 1 Fast R-CNN using PRN proposals

3. stage 2 Fine tune RPN proposals of stage 1

4. stage 2 Fine tune Fast R-CNN of stage 1

每个阶段求解器的超参数配置文件在:models/数据集/预训练模型/faster_rcnn_alt_opt下,如stage1_faste_rpn_solver60k80k.pt.

可以修改如下参数:

base_lr: 0.001
lr_policy: "step"
gamma: 0.1
stepsize: 60000
display: 20
average_loss: 100
momentum: 0.9
weight_decay: 0.0005

此外每个阶段的back bone基础网络模型也在这个路径下,如stage1_rpn_train.pt

训练准备工作

1. 在训练新模型时候,为防止与之前的模型搞混,需要再训练前完成以下三件事:

(1) output文件夹删除,

(2)删除py-faster-rcnn/data/cache中的文件

(3)删除py-faster-rcnn/data/VOCdevkit2007/annotations_cache中的文件

2. 至于学习率等之类的设置

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值