[NOI2022] 移除石子

[NOI2022] 移除石子

题目描述

你正在玩一个名为“移除石子”的小游戏。

\(n\) 堆石子排成一行,第 \(i\) 堆有 \(a_i\) 枚,你的任务是通过如下的操作将所有石子移除:

  • 操作一:选择一堆石子,将其中的至少 \(2\) 枚石子移除;
  • 操作二:选择一个连续的编号区间 \([l, r]\)(\(1 \le l \le r \le n\))并满足 \(r - l \ge 2\),将其中的每一堆石子都恰好移除 \(1\) 枚。

你可以采用任意顺序执行任意多次上述两种操作,直到无法再执行操作为止。若最后你能将所有石子全部移除则胜利。

你或许已经开始计算起了诸如“有多少种本质不同的操作方式”的问题,但实际玩起来你却发现自己总是在输。因此,你打算玩个小花招:在游戏开始时,你在手里偷偷藏有 \(k\) 枚石子,在执行所有操作之前你可以且必须将这些石子放入某一堆或某几堆石子中。你期望这会提高自己的胜率,但也清楚这可能会使自己输掉原本可能胜利的游戏。

现在,你可以自由选择一个初始局面进行游戏,具体而言,每个 \(a_i\) 可以选择 \([l_i, r_i]\) 范围内的任意整数。你希望计算出,在多少种初始局面下,自己存在至少一种获胜的方案。由于答案很大,你只需要输出其对 \(({10}^9 + 7)\) 取模的结果。两个初始局面不同,当且仅当存在至少一个 \(\boldsymbol{1 \le i \le n}\) 使得两者的 \(\boldsymbol{a_i}\) 不相等,注意这里的“初始局面”指的是你放入 \(\boldsymbol{k}\) 枚石子之前的局面。

输入格式

本题有多组测试数据。 第一行一个正整数 \(T\) 表示测试数据组数,接下来依次给出每组测试数据。

对于每组测试数据,第一行两个整数 \(n, k\),分别表示石子堆数和加入的石子个数,接下来 \(n\) 行,每行两个非负整数 \(l_i, r_i\) 表示每堆石子初始石子数的范围。

输出格式

对于每组数据输出一行一个整数,表示可能获胜的局面数对\(({10}^9 + 7)\) 取模的结果。

样例 #1

样例输入 #1

1
4 1
0 1
0 1
0 1
0 1

样例输出 #1

14

提示

【样例解释 #1】

共有 \(2^4 = 16\) 种可能的初始局面,可以证明除了 \((0 \ 0 \ 0 \ 0)\)\((1 \ 0 \ 0 \ 1)\) 这两种初始局面无法获胜以外,其余初始局面均存在获胜方案。例如,初始局面为 \((1 \ 0 \ 1 \ 0)\) 时,你可以将手中的 \(1\) 枚石子放入第 \(2\) 堆石子,使局面变为 \((1 \ 1 \ 1 \ 0)\),再对区间 \([1, 3]\) 使用一次操作二即可。


【样例 #2】

见附件中的 stone/stone2.instone/stone2.ans


【样例 #3】

见附件中的 stone/stone3.instone/stone3.ans


【样例 #4】

见附件中的 stone/stone4.instone/stone4.ans


【数据范围】

对于 \(100 \%\) 的数据,保证 \(T \le 10\)\(3 \le n \le 1000\)\(0 \le l_i \le r_i \le {10}^9\)\(0 \le k \le 100\)

测试点编号\(n \le\)\(k \le\)特殊条件
\(1 \sim 3\)\(5\)\(2\)\(r_i \le 5\)
\(4 \sim 5\)\(1000\)\(0\)\(l_i = r_i\)
\(6 \sim 8\)\(1000\)\(100\)\(l_i = r_i\)
\(9 \sim 11\)\(1000\)\(0\)
\(12 \sim 13\)\(1000\)\(2\)
\(14 \sim 15\)\(1000\)\(100\)\(r_i \le 10\)
\(16 \sim 20\)\(1000\)\(100\)

非常厉害的一道题。
先考虑判定

  • 用任意长度的线段等价于用3,4,5的线段。
  • 一个端点同时伸出长度为4,5的线段等价于一次操作2后在他的下一个端点延伸出长度为3,4的线段。
  • 两个相同的线段可以用操作2解决。
  • 推论:一个端点最多成为两个线段的左端点。

有了这个东西就可以进行 k=0 情况的 dp 了。定义 \(dp_{i,j,c}\) 表示以 \(i-2\) 为左端点的线段有 \(j\) 个,\(i-1\) 为左端点的线段有 \(c\) 个是否有可能。转移的时候枚举 \(i-2\) 处有多少个线段延伸到了 \(i-1\) 处即可。

考虑 \(k\ne 0\),发现在大多情况中, \(k\) 是满足的话,\(k+1\) 也是满足的。只有两种特例

  • 序列为三个 1,\(k=1\)
  • 序列为全0,\(k=1\)

特判掉这两种,改变定义为 \(dp_{i,j,c}\) 至少要增加多少个点才可能合法。答案对 101 取 min。

现在考虑原题,考虑 dp 套 dp。定义 \(f_{i,S}\) 为前 \(i\) 个数,dp数组的状态为 S 的时候,有多少种方案。打表发现,可能的 dp 数组的状态是8758种的。写一个搜索搜出所有状态,然后 dp 即可。

  • 24
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值