基于ARM的除法运算优化策略

        和4/8位单片机相比,ARM的性能和处理能力是遥遥领先的。但与之相应,ARM的系统设计复杂度和难度,较之传统 设计方法也大大提升了,同时也大大拓展了针对arm芯片特性进行优化 空间,例如针对指令流水线 优化、针对寄存器分配进行 优化等。

       arm在硬件上不支持除法指令,编译器是通过调用C库函数来实现除法运算的,有许多不同类型 除法程序来适应不同 除数和被除数。但直接利用C 库函数中de标准整数除法程序,根据执行情况和输入操作数 范围,要花费20~100个周期,消耗较多 软件运行时间。在实时嵌入式应用中,对时间参 数较为敏感,故可以考虑如何优化避免除法消耗过多 CPU运行时间。
        除法和模运算(/和%)执行起来比较慢,所以应尽量避免使用。但是,除数是常数
除法运算和用同一个除数 重复除法,执行效率会比较高。在arm中,可以利用单条MUL指令实现乘法操作。本文将阐述如何用乘法运算代替除法运算,以及如何使除法
次数最少化。

1  避免除法运算    

        在非嵌入式领域,因为CPU运算速度快、存储器容量大,除法操作通常都是不加考虑直接使用 。但在嵌入式领域,首先需要考虑 是这些除法操作是否是必须的。以对环形缓冲区操作为例,经常要用到除法,其实完全可以避免这些除法运算。
        假定
一个buffer_size大小的环形缓冲区,如图1所示,0ffset指定目前所在 位置。通过increment字节来增加offset 值,一般是这样写的:

0ffset = (Offset + increment) % buffer_size;
效率更高
写法是:

offset += increment;

if (offset >= buffer_size) {    

offset -= buffer_size;

}
        第一种写法要花费50个周期,而第二种因为没
除法运算,只须花费3个周期。这里假定increment<buff_er_size,在实际应用中这点应该是保证
        如果不能避免除法运算,那么就应尽量使除数和被除数是无符号
整数。
符号 除法程序执行起来更加慢,因为它们先要取得除数和被除数 绝对值,再调用无符号除法运算,最后再确定结果的符号

 

2  充分利用商和余数     

 

       许多C语言库中 除法函数返回商和余数。换句话说,每一个除法运算,余数是可以无偿得到 ,反之亦然。例如,要在屏幕缓冲区找到偏移量为offset 屏幕位置(x,y),可以这样写: typeclef struct{  

        int  x; 

        int y;

}point ;

point getxy_v1(unsigned int offset,unslgned int bytes_per_line){

        point p ;

        p.y=offset/bytes_per_line ;

        p.x=offset -   p.y*  bytcs_per_line ;

        return p ;

}

       这里,似乎对p.x使用减法和乘法,少了一次除法运算 ;但是,实际上使用模运算或者取余操作效率更高,对

getxy_vl改进如下:

point getxy_v2(unsigned int offset,unsigned int bytes_per_line){

point P ;

P.x=offset%bytes_per_1ine ;

P.y=offset/bytes_per_line ;

return P;


        从下面编译器的输出结果可以看到,只有一次除法调用。实际上,这个程序要比前面 getxy_vl少4条指令(注意,并不是对 所有的编译器和C库都有这样的结果)。getxy_v2

 

  STMFD r13!,{r4,r14}                                         ;保存r4,lr人堆栈

  MOV  r4,rO                                                            ;赋值后r4保存 为点P基址

  MOV  rO,r2                                                            ;rO=bytes_per_line

  BL    rt_udiv                                                              ;调用无符号除法例程

    (r0.;r1)=(rl/rO,rl%rO)

STR    r0,[r4,#4]                                                   ;P.y=offset/bytes_per_line

STR  rl,[r4,#o]                                                      ;P.x=offset%bytes_per_line

LDMFD r13!,(r4,pc)                                             ;恢复上下文,返回

 

3  把除法转换为乘法

 

        在程序中,同一个除数 除法经常会出现很多次。在前面 例子中,bytes_per_line 值在整个程序中都是固定不变 。又如3到2笛卡尔坐标变换,其中就使用了同一个除数两次:

(x,Y,x)→(x/z,y/z)


    这种情况下,使用cache指令中 值1/z,并使用1/z 乘法来代替除法运算,效率会更高。另外,要尽可能使用int类型 运算,避免使用浮点运算。


    下面将更加偏重于从数学和理论 角度分析,把重复除法转换成乘法运算。


    下面来区分精确数学意义上 除法和整型除法运算:

◇n/d,即整数n被分成整数d份,结果趋向于O(与C语言相同);

◇n%d,即n被d除之后 余数,就是n--d(n/d);

◇n/d=n·d-1,即真正数学意义上的n 被d除。


    当使用整型除法时,最容易估算d-1值 方法是计算232/d。然后,就可以估算n/d为:

    (n(232/d))/232    (1)


    在执行n 乘法时,需要精确到64位。对于这种方法,会出现如下问题:

◇为了计算232/d,由于一个unsigned int类型 数据放不下232,编译器要使用64位long long类型 数,而且必须指定除法为(1 ull<<32)/d。这种64位 除法比32位 除法执行起来要慢得多。

◇如果d碰巧是1,那么232/d就不再适合于un—signed int数据类型。


    上面 做法似乎很好,而且解决了这两个问题。那么,再来看一下用(232一1)/d代替232/d。

 令

     s=0xffffffff ul/d    (2)

 

  以上n/d-2,q,n/d+1为整数值,所以可得q=n/d或q=(n/d)一1,即初步估计 结果q与正确值n/d 可能存在偏差1。可以发现,通过计算余数r=n—q·d(O≤r<2d)是比较容易 。下面 代码纠正了这个结果:

r=n--q*d;                                              /*初步估计结果余数r 范围为O≤r<2d*/

if(r>=d){                                               /*若需要校正*/

r-=d ;                                                  /*校正r,使O≤r<d为正确余数范围*/

n++ ;                                                   /*相应商加1进行校正*/

}                                                            /*得正确结果q=n/d和r=n%d*/

 


    下面给出一个实例,用上面
算法完成了N个元素de数组被d除。首先,计算上面所说des值,然后用乘以5来代替每个被d除de除法。64位 乘是很容易实现 ,因为arm中
一条指令UMULL,可以进行2个32位数相乘,给出一个64位 结果。

void scale(

unsigned int*dest ;                                                            /*目 数据*/

unsigned int*src ;                                                              /*源数据*/

unsignedInt d ;                                                                  /*分母d*/

urlslglaedInt N ;)                                                               /*数据长度*/

{

unsigned int s=0xFFFFFFFFu/d ;

do{

unsigned int n,q,r ;

n=*(src++) ;

q=(urtslgrted int)(((unsined tong long)n*s)>>32) ;

r=n*d ;

if(r>=d){                                                                             /*若需要对商进行校正*/

    q++ ;

}

    *(dest++)=q;

}while(一一N) ;

}


    这里假定除数和被除数都是32位 无符号整数。当然,使用32位乘法进行16位 无符号数计算,或者使用1 28位乘法进行64位数计算,运算规则是一样 。可以为特定 数据选择最窄 运算宽度。如果数据是16位de 那么就设置s=(216一1)/d, 然后用标准 整型乘法来求值q。

 

4  结  论

       在嵌入式软件编程中,为了节省CPU运行时间,应尽可能避免使用除法。对环形缓冲区 处理可以不用除法。如果不能避免除法运算,那么应尽可能使用除法程 序同时产生商n/d和余数n%d 好处。对于重复对一除数的除法.预先计算好s=(2k一1)/d,用乘以sde2k位乘法来代替除以d k位无 符号整数除法,可大大减少由于直接使用除法操作引入 指令周期数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值