paddle02之手写数字识别

深度学习步骤:

  • 1. 数据处理:读取数据 和 预处理操作
  • 2. 模型设计:网络结构(假设)
  • 3. 训练配置:优化器(寻解算法)
  • 4. 训练过程:循环调用训练过程,包括前向计算 + 计算损失(优化目标) + 后向传播
  • 5. 保存模型并测试:将训练好的模型保存

一、数据处理

      paddlepaddle已经将读取数据的方法封装好了

# 1、导入需要的包
import numpy as np
import paddle as paddle
import paddle.fluid as fluid
from PIL import Image
import matplotlib.pyplot as plt
import os


BUF_SIZE = 512
BATCH_SIZE = 128
model_save_dir = "hand.inference.model"
infer_path = "4.jpg"


# 2、读取数据
def load_data():
    train_reader = paddle.batch(
        paddle.reader.shuffle(paddle.dataset.mnist.train(),
                              buf_size=BUF_SIZE),
        batch_size=BATCH_SIZE)
    # 用于训练的数据提供器,每次从缓存中随机读取批次大小的数据
    test_reader = paddle.batch(
        paddle.reader.shuffle(paddle.dataset.mnist.test(),
                              buf_size=BUF_SIZE),
        batch_size=BATCH_SIZE)
    return train_reader, test_reader

二、网络设计

  使用的是简单的全连接层作为网络模型

# 定义多层感知器
def multilayer_perceptron(input):
    # 第一个全连接层,激活函数为ReLU
    hidden1 = fluid.layers.fc(input=input, size=100, act='relu')
    # 第二个全连接层,激活函数为ReLU
    hidden2 = fluid.layers.fc(input=hidden1, size=100, act='relu')
    # 以softmax为激活函数的全连接输出层,输出层的大小必须为数字的个数10
    prediction = fluid.layers.fc(input=hidden2, size=10, act='softmax')
    return prediction

三、开始训练

  使用感知器进行训练以及绘制出损失和精度的图像

def draw_train_process(title,iters,costs,accs,label_cost,lable_acc):
    plt.title(title, fontsize=24)
    plt.xlabel("iter", fontsize=20)
    plt.ylabel("cost/acc", fontsize=20)
    plt.plot(iters, costs,color='red',label=label_cost)
    plt.plot(iters, accs,color='green',label=lable_acc)
    plt.legend()
    plt.grid()
    plt.show()


# 4、开始训练
def trainer():
    train_reader, test_reader = load_data()
    # 输入的原始图像数据,大小为1*28*28
    image = fluid.layers.data(name='image', shape=[1, 28, 28], dtype='float32')  # 单通道,28*28像素值
    # 标签,名称为label,对应输入图片的类别标签
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')  # 图片标签
    # 获取分类器
    predict = multilayer_perceptron(image)
    # 使用交叉熵损失函数,描述真实样本标签和预测概率之间的差值
    cost = fluid.layers.cross_entropy(input=predict, label=label)
    # 使用类交叉熵函数计算predict和label之间的损失函数
    avg_cost = fluid.layers.mean(cost)
    # 计算分类准确率
    acc = fluid.layers.accuracy(input=predict, label=label)
    # 使用Adam算法进行优化, learning_rate 是学习率(它的大小与网络的训练收敛速度有关系)
    optimizer = fluid.optimizer.AdamOptimizer(learning_rate=0.001)
    opts = optimizer.minimize(avg_cost)
    # 定义使用CPU还是GPU,使用CPU时use_cuda = False,使用GPU时use_cuda = True

    use_cuda = False
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    # 获取测试程序
    test_program = fluid.default_main_program().clone(for_test=True)
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())
    feeder = fluid.DataFeeder(place=place, feed_list=[image, label])

    all_train_iter = 0
    all_train_iters = []
    all_train_costs = []
    all_train_accs = []

    EPOCH_NUM = 2

    for pass_id in range(EPOCH_NUM):
        # 进行训练
        for batch_id, data in enumerate(train_reader()):  # 遍历train_reader
            train_cost, train_acc = exe.run(program=fluid.default_main_program(),  # 运行主程序
                                            feed=feeder.feed(data),  # 给模型喂入数据
                                            fetch_list=[avg_cost, acc])  # fetch 误差、准确率

            all_train_iter = all_train_iter + BATCH_SIZE
            all_train_iters.append(all_train_iter)

            all_train_costs.append(train_cost[0])
            all_train_accs.append(train_acc[0])

            # 每200个batch打印一次信息  误差、准确率
            if batch_id % 200 == 0:
                print('Pass:%d, Batch:%d, Cost:%0.5f, Accuracy:%0.5f' %
                      (pass_id, batch_id, train_cost[0], train_acc[0]))

        # 进行测试
        test_accs = []
        test_costs = []
        # 每训练一轮 进行一次测试
        for batch_id, data in enumerate(test_reader()):  # 遍历test_reader
            test_cost, test_acc = exe.run(program=test_program,  # 执行训练程序
                                          feed=feeder.feed(data),  # 喂入数据
                                          fetch_list=[avg_cost, acc])  # fetch 误差、准确率
            test_accs.append(test_acc[0])  # 每个batch的准确率
            test_costs.append(test_cost[0])  # 每个batch的误差

        # 求测试结果的平均值
        test_cost = (sum(test_costs) / len(test_costs))  # 每轮的平均误差
        test_acc = (sum(test_accs) / len(test_accs))  # 每轮的平均准确率
        print('Test:%d, Cost:%0.5f, Accuracy:%0.5f' % (pass_id, test_cost, test_acc))

        # 保存模型
        # 如果保存路径不存在就创建
    if not os.path.exists(model_save_dir):
        os.makedirs(model_save_dir)
    print('save models to %s' % (model_save_dir))
    fluid.io.save_inference_model(model_save_dir,  # 保存推理model的路径
                                  ['image'],  # 推理(inference)需要 feed 的数据
                                  [predict],  # 保存推理(inference)结果的 Variables
                                  exe)  # executor 保存 inference model

    print('训练模型保存完成!')
    draw_train_process("training", all_train_iters, all_train_costs, all_train_accs, "trainning cost", "trainning acc")

四、模型预测

   使用训练的模型对数字图片(归一化)进行预测

def load_image(file):
    im = Image.open(file).convert('L')                        #将RGB转化为灰度图像,L代表灰度图像,像素值在0~255之间
    im = im.resize((28, 28), Image.ANTIALIAS)                 #resize image with high-quality 图像大小为28*28
    im = np.array(im).reshape(1, 1, 28, 28).astype(np.float32)#返回新形状的数组,把它变成一个 numpy 数组以匹配数据馈送格式。
    # print(im)
    im = im / 255.0 * 2.0 - 1.0                               #归一化到【-1~1】之间
    return im


# 5、模型预测
def predict():
    use_cuda = False
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    infer_exe = fluid.Executor(place)
    inference_scope = fluid.core.Scope()
    # 加载数据并开始预测
    with fluid.scope_guard(inference_scope):
        # 获取训练好的模型
        # 从指定目录中加载 推理model(inference model)
        [inference_program,  # 推理Program
         feed_target_names,  # 是一个str列表,它包含需要在推理 Program 中提供数据的变量的名称。
         fetch_targets] = fluid.io.load_inference_model(model_save_dir,
                                                        # fetch_targets:是一个 Variable 列表,从中我们可以得到推断结果。model_save_dir:模型保存的路径
                                                        infer_exe)  # infer_exe: 运行 inference model的 executor
        img = load_image(infer_path)

        results = infer_exe.run(program=inference_program,  # 运行推测程序
                                feed={feed_target_names[0]: img},  # 喂入要预测的img
                                fetch_list=fetch_targets)  # 得到推测结果,
        # 获取概率最大的label
        lab = np.argsort(results)  # argsort函数返回的是result数组值从小到大的索引值
        # print(lab)
        print("该图片的预测结果的label为: %d" % lab[0][0][-1])  # -1代表读取数组中倒数第一列

五、完整代码

# 1、导入需要的包
import numpy as np
import paddle as paddle
import paddle.fluid as fluid
from PIL import Image
import matplotlib.pyplot as plt
import os


BUF_SIZE = 512
BATCH_SIZE = 128
model_save_dir = "hand.inference.model"
infer_path = "4.jpg"


# 2、读取数据
def load_data():
    train_reader = paddle.batch(
        paddle.reader.shuffle(paddle.dataset.mnist.train(),
                              buf_size=BUF_SIZE),
        batch_size=BATCH_SIZE)
    # 用于训练的数据提供器,每次从缓存中随机读取批次大小的数据
    test_reader = paddle.batch(
        paddle.reader.shuffle(paddle.dataset.mnist.test(),
                              buf_size=BUF_SIZE),
        batch_size=BATCH_SIZE)
    return train_reader, test_reader


# 3、网络配置
# 定义多层感知器
def multilayer_perceptron(input):
    # 第一个全连接层,激活函数为ReLU
    hidden1 = fluid.layers.fc(input=input, size=100, act='relu')
    # 第二个全连接层,激活函数为ReLU
    hidden2 = fluid.layers.fc(input=hidden1, size=100, act='relu')
    # 以softmax为激活函数的全连接输出层,输出层的大小必须为数字的个数10
    prediction = fluid.layers.fc(input=hidden2, size=10, act='softmax')
    return prediction


def draw_train_process(title,iters,costs,accs,label_cost,lable_acc):
    plt.title(title, fontsize=24)
    plt.xlabel("iter", fontsize=20)
    plt.ylabel("cost/acc", fontsize=20)
    plt.plot(iters, costs,color='red',label=label_cost)
    plt.plot(iters, accs,color='green',label=lable_acc)
    plt.legend()
    plt.grid()
    plt.show()


# 4、开始训练
def trainer():
    train_reader, test_reader = load_data()
    # 输入的原始图像数据,大小为1*28*28
    image = fluid.layers.data(name='image', shape=[1, 28, 28], dtype='float32')  # 单通道,28*28像素值
    # 标签,名称为label,对应输入图片的类别标签
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')  # 图片标签
    # 获取分类器
    predict = multilayer_perceptron(image)
    # 使用交叉熵损失函数,描述真实样本标签和预测概率之间的差值
    cost = fluid.layers.cross_entropy(input=predict, label=label)
    # 使用类交叉熵函数计算predict和label之间的损失函数
    avg_cost = fluid.layers.mean(cost)
    # 计算分类准确率
    acc = fluid.layers.accuracy(input=predict, label=label)
    # 使用Adam算法进行优化, learning_rate 是学习率(它的大小与网络的训练收敛速度有关系)
    optimizer = fluid.optimizer.AdamOptimizer(learning_rate=0.001)
    opts = optimizer.minimize(avg_cost)
    # 定义使用CPU还是GPU,使用CPU时use_cuda = False,使用GPU时use_cuda = True

    use_cuda = False
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    # 获取测试程序
    test_program = fluid.default_main_program().clone(for_test=True)
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())
    feeder = fluid.DataFeeder(place=place, feed_list=[image, label])

    all_train_iter = 0
    all_train_iters = []
    all_train_costs = []
    all_train_accs = []

    EPOCH_NUM = 2

    for pass_id in range(EPOCH_NUM):
        # 进行训练
        for batch_id, data in enumerate(train_reader()):  # 遍历train_reader
            train_cost, train_acc = exe.run(program=fluid.default_main_program(),  # 运行主程序
                                            feed=feeder.feed(data),  # 给模型喂入数据
                                            fetch_list=[avg_cost, acc])  # fetch 误差、准确率

            all_train_iter = all_train_iter + BATCH_SIZE
            all_train_iters.append(all_train_iter)

            all_train_costs.append(train_cost[0])
            all_train_accs.append(train_acc[0])

            # 每200个batch打印一次信息  误差、准确率
            if batch_id % 200 == 0:
                print('Pass:%d, Batch:%d, Cost:%0.5f, Accuracy:%0.5f' %
                      (pass_id, batch_id, train_cost[0], train_acc[0]))

        # 进行测试
        test_accs = []
        test_costs = []
        # 每训练一轮 进行一次测试
        for batch_id, data in enumerate(test_reader()):  # 遍历test_reader
            test_cost, test_acc = exe.run(program=test_program,  # 执行训练程序
                                          feed=feeder.feed(data),  # 喂入数据
                                          fetch_list=[avg_cost, acc])  # fetch 误差、准确率
            test_accs.append(test_acc[0])  # 每个batch的准确率
            test_costs.append(test_cost[0])  # 每个batch的误差

        # 求测试结果的平均值
        test_cost = (sum(test_costs) / len(test_costs))  # 每轮的平均误差
        test_acc = (sum(test_accs) / len(test_accs))  # 每轮的平均准确率
        print('Test:%d, Cost:%0.5f, Accuracy:%0.5f' % (pass_id, test_cost, test_acc))

        # 保存模型
        # 如果保存路径不存在就创建
    if not os.path.exists(model_save_dir):
        os.makedirs(model_save_dir)
    print('save models to %s' % (model_save_dir))
    fluid.io.save_inference_model(model_save_dir,  # 保存推理model的路径
                                  ['image'],  # 推理(inference)需要 feed 的数据
                                  [predict],  # 保存推理(inference)结果的 Variables
                                  exe)  # executor 保存 inference model

    print('训练模型保存完成!')
    draw_train_process("training", all_train_iters, all_train_costs, all_train_accs, "trainning cost", "trainning acc")


def load_image(file):
    im = Image.open(file).convert('L')                        #将RGB转化为灰度图像,L代表灰度图像,像素值在0~255之间
    im = im.resize((28, 28), Image.ANTIALIAS)                 #resize image with high-quality 图像大小为28*28
    im = np.array(im).reshape(1, 1, 28, 28).astype(np.float32)#返回新形状的数组,把它变成一个 numpy 数组以匹配数据馈送格式。
    # print(im)
    im = im / 255.0 * 2.0 - 1.0                               #归一化到【-1~1】之间
    return im


# 5、模型预测
def predict():
    use_cuda = False
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    infer_exe = fluid.Executor(place)
    inference_scope = fluid.core.Scope()
    # 加载数据并开始预测
    with fluid.scope_guard(inference_scope):
        # 获取训练好的模型
        # 从指定目录中加载 推理model(inference model)
        [inference_program,  # 推理Program
         feed_target_names,  # 是一个str列表,它包含需要在推理 Program 中提供数据的变量的名称。
         fetch_targets] = fluid.io.load_inference_model(model_save_dir,
                                                        # fetch_targets:是一个 Variable 列表,从中我们可以得到推断结果。model_save_dir:模型保存的路径
                                                        infer_exe)  # infer_exe: 运行 inference model的 executor
        img = load_image(infer_path)

        results = infer_exe.run(program=inference_program,  # 运行推测程序
                                feed={feed_target_names[0]: img},  # 喂入要预测的img
                                fetch_list=fetch_targets)  # 得到推测结果,
        # 获取概率最大的label
        lab = np.argsort(results)  # argsort函数返回的是result数组值从小到大的索引值
        # print(lab)
        print("该图片的预测结果的label为: %d" % lab[0][0][-1])  # -1代表读取数组中倒数第一列


if __name__ == "__main__":
    # trainer()
    predict()

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值