
遥感
文章平均质量分 60
各类遥感数据的处理
我不爱机器学习
这个作者很懒,什么都没留下…
展开
-
基于pysptools实现端元提取及无监督光谱分类
本文通过一个光谱分解示例来对 SERC文件进行,使用PySpTools包进行,绘制光谱,并使用(Spectral Angle Mapping)和(Spectral Information Divergence)对光谱端元进行。原创 2025-01-15 05:25:59 · 943 阅读 · 0 评论 -
用于分析高光谱图像的开源软件(python)
HSI-PP 是一个独立的、自动化的、开源的高光谱图像处理平台,适用于植物表型分析中的各种应用,为植物研究界服务。下载并解压后从子文件夹中运行“HSI-PP.exe”文件。今天给大家分享一个用 python 写的用于分析高光谱图像和其他植物表型数据集的开源软件 HSI-PP。HSI-PP 集成了先进的图像处理程序,可以从不同类型的高光谱图像中提取有意义的信息,从而改进决策过程。此外,HSI-PP 还能够准备用于深度学习分析的高光谱图像,并训练机器学习模型进行分类和回归。原创 2024-12-03 10:36:04 · 730 阅读 · 0 评论 -
一文详解高光谱数据python处理包spectral(SPy)
解决方案:ASD(Analytical Spectral Devices)是一种用于地面光谱测量的设备,可以测量多个波长范围内的反射率。,然后保留足够的特征值(相应的特征向量)来捕获总图像方差的所需部分。然后,将图像像素投影到剩余的特征向量上,以降低图像像素的维数。上图中误差图中的五个连续区域对应于 GaussianClassifier 忽略的真值类,因为它们的样本太少。支持向量机(SVM)是一种常用的分类算法,可以用于高光谱数据的分类、识别和回归。上面的分类图显示了整个图像的分类结果。原创 2024-10-26 14:03:56 · 3346 阅读 · 0 评论 -
scikit-eo: 用于遥感数据分析的Python包
如今,遥感数据急剧增加。可以使用具有不同空间和时间分辨率的微波和光学图像,用于监测各种环境问题,例如森林砍伐、土地退化、土地利用和土地覆盖变化等。尽管人们做出了努力(即 Python 包、论坛、社区等)来提供用于卫星图像预处理、处理和分析的代码行工具,但仍存在需要填补的空白。换句话说,许多用户仍然花费了太多时间来开发 Python 代码行。通过植被指数的线性趋势绘制土地退化地图的算法、融合光学和雷达图像以对植被覆盖进行分类以及机器学习算法的校准等尚不可用。原创 2024-10-25 14:54:02 · 683 阅读 · 0 评论 -
用于遥感数据处理的python脚本
作者使用基于无人机的智利中南部泥炭地的高光谱图像。该图像有 41 个波段(10 nm 宽),范围为 480-880 nm,像素大小为 10 cm。还可以对数据执行 MNF 转换。此函数有几个选项,例如应用 Savitzky Golay 滤波和光谱的亮度归一化。链接:https://github.com/JavierLopatin/Python-Remote-Sensing-Scripts。从图像中获取灰度共现矩阵 (GLCM) 纹理。今天给大家分享一组用于遥感处理的 python 脚本。原创 2024-08-04 17:11:46 · 346 阅读 · 0 评论 -
对地观测精彩工具教程代码项目整理!强推!
Python地理空间分析指南(第2版)(书籍推荐)在开源 Python 中使用地球和环境科学的数据。地球科学Python开源工具包合集。python地理编码服务Geocoder。分享4个python空间分析学习网站。原创 2024-04-01 22:07:58 · 195 阅读 · 0 评论