残差分析(残差原理与标准化残差分析)

1、残差分析定义

在回归模型y=\beta _{0}+\beta _{1}x+\varepsilon 中,假定\varepsilon 的期望值为0,方差相等且服从正态分布的一个随机变量。但是,若关于\varepsilon的假定不成立,此时所做的检验以及估计和预测也许站不住脚。确定有关\varepsilon的假定是否成立的方法之一是进行残差分析(residual analysis).

2、残差与残差图

残差(residual)是因变量的观测值y_{i}与根据估计的回归方程求出的预测 \hat{y}_{i} 之差,用e表示。反映了用估计的回归方程去预测y_{i}而引起的误差。第i个观察值的残差为: e_{i}=y_{i}-\hat{y}_{i}

常用残差图:有关x残差图,有关\hat{y}的残差图,标准化残差图

有关x残差图:用横轴表示自变量x的值,纵轴表示对应残差 e_{i}=y_{i}-\hat{y}_{i},每个x的值与对应的残差用图上的一个点来表示。

分析残差图,首先考察残差图的形态及其反映的信息。

分析:

(a)对所有x值,\varepsilon的方差都相同,且描述变量x和y之间的回归模型是合理的,残差图中的所有点落在一条水平带中间。

(b)对所有的值,\varepsilon的方差是不同的,对于较大的x值,相应的残差也较大,违背了\varepsilon的方差相等的假设

(c)表明所选的回归模型不合理,应考虑曲线回归或多元回归模型。

3、标准化残差

对于\varepsilon正态性假定的检验,也可通过标准化残差分析完成。

标准化残差(standardized residual)是残差除以其标准差后得到的数值,也称Pearson残差或半学生化残差(semi-studentized residuals),用z_{e}表示。第i个观察值的标准化残差为:z_{e_{i}}=\frac{e_{i}}{s_{e}}=\frac{y_{i}-\hat{y}_{i}}{s_{e}}   (s_{e}是残差的标准差的估计)

如果误差项 \varepsilon 服从正态分布的这一假定成立,则标准化残差的分布也服从正态分布。大约有95%的标准化残差在 -2~2 之间。

从图中可以看出,除了箭头所标识的点外,所有的标准化残差都在 -2~2 之间,所以误差项服从正态分布的假定成立。

 

在Python中进行残差分析的方法如下所示: 1. 首先,使用statsmodels包中的OLS函数建立线性回归模型。可以使用sklearn.datasets中的load_boston函数加载波士顿房价数据集,并将其分为训练集和测试集。 2. 使用fit方法来拟合模型,并使用predict方法计算出训练集的预测值。 3. 使用get_influence方法获取残差相关的信息。其中,通过计算y_train与y_predict的差值来获得残差。 4. 使用resid_studentized_external方法计算学生化残差。 5. 可以使用numpy库来计算残差的平均值和方差。通常情况下,残差的平均值应该接近零,方差应该相对较小。 引用 此外,残差的正态性也是残差分析的重要部分。通过观察残差的分布图,可以大致判断残差是否服从正态分布。通常情况下,我们希望残差的分布接近正态分布。 引用 此外,线性回归模型还要求预测变量和响应变量之间具有线性关系。因此,在残差分析中,我们还要检查残差是否随着预测变量的变化而存在非线性关系。如果残差的均值为零,通常情况下我们可以假设存在线性关系。 引用 总结一下,Python中的残差分析可以通过计算残差和学生化残差来进行。同时,还可以观察残差的分布图以及检查残差是否存在线性关系。这些分析可以帮助我们评估线性回归模型的拟合效果,以及检验模型假设是否成立。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [用python计算残差等](https://blog.csdn.net/TSzero/article/details/117032859)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [Python金融系列第五篇:多元线性回归和残差分析](https://blog.csdn.net/CoderPai/article/details/82982146)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值