1、残差分析定义
在回归模型 中,假定 的期望值为0,方差相等且服从正态分布的一个随机变量。但是,若关于的假定不成立,此时所做的检验以及估计和预测也许站不住脚。确定有关的假定是否成立的方法之一是进行残差分析(residual analysis).
2、残差与残差图
残差(residual)是因变量的观测值与根据估计的回归方程求出的预测 之差,用e表示。反映了用估计的回归方程去预测而引起的误差。第i个观察值的残差为:
常用残差图:有关x残差图,有关的残差图,标准化残差图
有关x残差图:用横轴表示自变量x的值,纵轴表示对应残差 ,每个x的值与对应的残差用图上的一个点来表示。
分析残差图,首先考察残差图的形态及其反映的信息。
分析:
(a)对所有x值,的方差都相同,且描述变量x和y之间的回归模型是合理的,残差图中的所有点落在一条水平带中间。
(b)对所有的值,的方差是不同的,对于较大的x值,相应的残差也较大,违背了的方差相等的假设
(c)表明所选的回归模型不合理,应考虑曲线回归或多元回归模型。
3、标准化残差
对于正态性假定的检验,也可通过标准化残差分析完成。
标准化残差(standardized residual)是残差除以其标准差后得到的数值,也称Pearson残差或半学生化残差(semi-studentized residuals),用表示。第i个观察值的标准化残差为: (是残差的标准差的估计)
如果误差项 服从正态分布的这一假定成立,则标准化残差的分布也服从正态分布。大约有95%的标准化残差在 -2~2 之间。
从图中可以看出,除了箭头所标识的点外,所有的标准化残差都在 -2~2 之间,所以误差项服从正态分布的假定成立。