
机器学习
主要介绍机器学习算法和模型
我不爱机器学习
这个作者很懒,什么都没留下…
展开
-
pymysql.err.InternalError: Packet sequence number wrong - got 45 expected 1
错误:解决:原因解决方法原创 2020-06-19 16:16:28 · 5917 阅读 · 0 评论 -
[PRML]马尔可夫随机场
从《》和《》中,我们已经了解有向图形模型(directed graphical models)指定了一组变量上的联合分布的因式分解为局部条件分布(local conditional distributions)的乘积。它们还定义了一组条件独立属性( conditional independence properties),必须满足根据图进行因式分解的任何分布。现在我们来看第二类主要的图模型,它们是由无向图(undirected graphs)描述的,并且再次指定了因子分解( factorization)和原创 2020-06-06 16:15:43 · 1141 阅读 · 0 评论 -
机器学习SVM算法常见面试题(一)
在面试数据分析或算法相关岗位时,支持向量机是常被问到的一个算法,因此本文对于面试中常见的SVM原理以及核函数方面的问题进行了汇总。本文主要包含以下内容1 什么是支持向量机?2 什么叫硬间隔软间隔?3 SVM为什么采用间隔最大化?4 SVM与感知机的区别?5 什么叫支持向量?6 支持向量机包含几种模型?7 SVM怎么处理多分类?8 核函数原理?9 为什么引入核函数?10 SVM有哪些核函数,对应有...原创 2020-05-29 09:54:08 · 5774 阅读 · 4 评论 -
[PRML]图模型-条件独立
1 简介多变量概率分布的一个重要概念是条件独立(conditional independence)。考虑三个变量aaa、bbb和ccc,假设aaa在给定bbb和ccc下的条件分布不依赖于bbb的值,则:p(a∣b,c)=p(a∣c)p(a|b,c)=p(a|c)p(a∣b,c)=p(a∣c)读作在给定ccc下aaa独立于bbb。如果我们考虑以c为条件的a和b的联合分布,这可以用一种稍微不同的方式来表示,我们可以写成这种形式...原创 2020-05-29 09:50:11 · 3092 阅读 · 4 评论 -
[PRML]图模型-有向图模型
简介概率在现代模式识别中起着核心作用。概率论可以用两个简单的方程来表示,它们分别对应着求和法则和乘积法则。因此,们完全可以通过代数操作来建立和解决复杂的概率模型。然而,使用概率分布的图解表示(称为概率图模型,probabilistic graphical models)来增强分析是非常有利的。它提供了几个有用的属性:提供了一种可视化概率模型结构的简单方法,并可用于设计和激发新模型。通过查...原创 2020-05-19 11:06:59 · 2030 阅读 · 0 评论 -
高斯分布、高斯混合详细讲解
123原创 2020-04-09 22:14:00 · 1390 阅读 · 0 评论 -
PCA(用数学原理进行推导和解释)
首发于 我不爱机器学习 公众号,微信号:learning_free1、相关数学知识1.1 均值x={1,2,3}E[a+x]=a+E[x]E[αx]=αE[x]E[αx+a]=αE[x]+a\begin{aligned}E[a+x] &=a+E[x] \\E[\alpha x] &=\alpha E[x] \\E[\alpha x+a] &=\alpha...原创 2020-03-17 21:10:53 · 913 阅读 · 0 评论 -
集成算法学习(4)-Boosting (XGBoost 回归)(举例说明,通俗易懂)
在深入了解XGBoost算法之前,大家可以先了解一下:GBDT回归、GBDT分类、正则化。1、简介XGBoost:又叫 eXtreme Gradient Boosting、gradient boosting、multiple additive regression trees、stochastic gradient boosting or gradient boosting machine...原创 2020-02-14 11:11:40 · 3066 阅读 · 0 评论 -
期望最大化 (EM)(原理详细说明与推导)
在此之前大家可以了解一下在深入理解 EM 算法前,先了解一下 模型参数求解方法和Jensen'sinequality。1、模型参数求解方法有两种方法:1)训练数据是完整的,即不缺少某些属性值,则直接用训练数据去拟合模型得到模型的参数即可,如极大似然估计和最大后验估计等。2)训练数据是不完整的,即缺少某些属性数据,则此时不可用训练数据去拟合模型(某些属性没有数据,则无法对该属性...原创 2020-02-14 11:06:18 · 7256 阅读 · 3 评论 -
一元高斯分布(Univariate Gaussian Distribution)(详细说明,便于理解)
1、一元高斯分布的定义高斯分布也叫正态分布,主要用于连续变量的分布。假设有一变量,则其高斯分布形式为: 式中是均值(mean),是方差(variance),方差的平方根叫做标准误(standard deviation),方差的倒数叫做精度(precision)。高斯分布满足:高斯分布是归一化的(...原创 2020-01-15 11:16:01 · 10029 阅读 · 0 评论 -
python3 支持向量机 (详细说明与推导)
建议先看一下这两篇文章:核函数(Kernel function)(举例说明,通俗易懂)拉格朗日乘子、拉格朗日对偶问题 (举例说明,通俗易懂)1、支持向量机简介支持向量机(support vector machine)是一种用于分类、回归和异常值(离群点)检测的监督学习方法。支持向量机是一种二分类模型,其基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大有别于感知机;支...原创 2019-12-11 16:23:44 · 2127 阅读 · 0 评论