
信号处理
文章平均质量分 93
信号处理相关知识的介绍以及python实现
我不爱机器学习
这个作者很懒,什么都没留下…
展开
-
信号系统之拉普拉斯变换
拉普拉斯变换是一种在信号连续时分析的技术。z 变换是离散情况下使用的技术。原创 2024-03-04 21:01:52 · 3035 阅读 · 1 评论 -
信号系统之z变换
正如模拟滤波器是使用拉普拉斯变换设计的一样,递归数字滤波器也是使用称为z变换的并行技术开发的。。。相应地,。但是,这两种技术并不是彼此的镜像;,而** z 平面使用极坐标格式**。递归数字滤波器通常从经典模拟滤波器之一开始设计,例如巴特沃斯、切比雪夫或椭圆。然后使用一系列数学转换来获得所需的数字滤波器。z 变换为这种数学提供了框架。原创 2024-03-04 21:01:38 · 3165 阅读 · 0 评论 -
信号系统之复数傅立叶变换
在这种情况下,0 到 1.0 之间的频谱包含与 0.5 到 0.5 之间的频谱相同的信息。显示复杂频谱有两种常见方法,如图所示,零频率可以放置在中心,正频率放置在右侧,负频率放置在左侧。然而,任何其他完整的周期都会给出相同的结果,即 -T 到 0、-T/2 到 T/2 等。如果频域是周期性的,只关心单个周期,因为其余的都是多余的。然而,如果时域是周期性的,我们只关心单个周期,因为其余的都是多余的。同样,如果信号在一个域中是连续的,则在另一域中将是非周期性的。到目前为止,都假设时域是完全实数的,即虚部为零。原创 2024-03-03 14:28:37 · 2753 阅读 · 3 评论 -
信号系统之复数
例如,图 30-2 显示了三个极坐标形式的复数,与之前在图 30-1 中呈现的复数相同。可以用复数来表示这个问题,将东/西坐标放入复数的实部,将北/南坐标放入复数的虚部。例如,风的力量矢量 A 的方向可能是 2 分向东和 6 分向北,表示为复数:2+6j。重要的是要理解,这不是一个方程,而只是让复数表示正弦曲线的一种方式。其中 h 是离地高度(以米为单位),g 是重力加速度(9.8 米每秒),v 是初速度(9.8 米每秒),t 是时间(以秒为单位)。实部是一个实数,虚部是虚数,即负数的平方根。原创 2024-03-02 20:10:39 · 1718 阅读 · 0 评论 -
信号系统之快速傅里叶变换
对于实部,点 N/2+1 与点 N/2-1 相同,点 N/2+2 与点 N/2-2 相同,依此类推。也就是说,点 N/2+1 是点 N/2-1 的负数,点 N/2+2 是点 N/2-2 的负数,依此类推。在实践中,将真实 DFT 的频谱加载到复数 DFT 阵列的样本 0 到 N/2 中,然后使用子程序在样本 N/2+1 和 N-1 之间生成负频率。例如,如果阵列从 1 到 N,则频域中的对称性约为点 1 和 N/2 + 1,而不是点 0 和 N/2。在一个信号中,奇数点为零,而在另一个信号中,偶数点为零。原创 2024-03-01 22:20:37 · 1802 阅读 · 0 评论 -
连续小波变换
但在。原创 2024-02-29 21:43:23 · 4347 阅读 · 0 评论 -
信号系统之傅里叶变换对
1 Delta 函数对对于离散信号,delta 函数是一个简单的波形,并且具有同样简单的傅里叶变换对。图11-1a显示了时域中的delta函数,其频谱在(b)和©中。幅度是一个恒定值,而相位完全为零。这可以通过使用 expansion/compression 属性来理解。当时域被压缩直到它变成脉冲时,频域被扩展,直到它成为一个常数。在(d)和(g)中,时域波形分别向右移动了4个和8个样本。时域波形的移动不会影响幅度,但会在相位上增加一个线性分量。此图中的相位信号尚未展开,因此仅从 -π 延伸到 π。另原创 2024-02-29 21:28:06 · 2476 阅读 · 0 评论 -
信号系统之滤波器比较
由于递归滤波器在低频和高频下具有更快的滚降速度,因此必须使windowed-sinc 内核的长度更长以匹配性能(即保持比较公平)。windowed-sinc 使用一个 1001 点滤波器内核,该内核是通过将 501 点窗口 sinc 滤波器内核与自身卷积而形成的,提供了更大的阻带衰减。另一方面,数字滤波器的平坦度主要受到舍入误差的限制,使其比模拟滤波器平坦数百倍。windowed-sinc 是通过卷积实现的 FIR 滤波器,而 Chebyshev 是通过递归实现的 IIR 滤波器。数字滤波器再加一分。原创 2024-02-29 21:15:30 · 1189 阅读 · 0 评论 -
信号系统之切比雪夫过滤器
图(b)显示了数字滤波器所特有的、在模拟电子器件中没有对应物的东西:阶跃响应中的过冲量在一定程度上取决于滤波器的截止频率。当纹波设置为 0% 时,滤波器称为最大平坦滤波器或巴特沃斯滤波器(以 1930 年描述这种响应的英国工程师 S. Butterworth 的名字命名)。每个滤波器的截止频率是在幅度超过0.707(-3dB)的地方测量的。在实际操作中,更多的工程师、科学家和程序员会从答案 2 的角度思考,而不是答案 1。表20-1和表20-2给出了通带纹波为0.5%的低通和高通滤波器的递归系数。原创 2024-02-28 20:03:37 · 3360 阅读 · 0 评论 -
信号系统之递归滤波器
例如,图 19-3 中的 x 为 0.86,这意味着输出信号中每个样本之前的值是 0.86。在(a)中,原始信号是一条平滑的曲线,除了高频正弦波的突发。换言之,输出信号中的每个样本都是根据正在处理的样本右侧的输入和输出样本计算得出的。例如,z变换可用于以下任务:在递归系数和频率响应之间进行转换,将级联和并行级合并到单个滤波器中,设计模拟模拟滤波器的递归系统等。换句话说,输出信号中的每个点都是通过将输入信号的值乘以“a”系数,将先前计算的输出信号值乘以“b”系数,然后将乘积相加来找到的。原创 2024-02-28 19:35:55 · 2161 阅读 · 0 评论 -
信号系统之FFT卷积
这是由第 450 行中神话般的 IFFT 子程序完成的,该子程序将 REX[] 和 IMX[] 中保存的 513 个点转换为输出段 XX[] 中保存的 1024 个点。第 270 行中的子程序是 FFT,将 XX[ ] 中保存的 1024 个样本转换为 REX[ ] 和 IMX[ ] 中保存的 513 个样本,实数和频率响应的虚部。在第 470 行到第 490 行中,此数组中的 399 个值(来自前一个输出段)被添加到当前正在处理的输出段中,保存在 XX[] 中。卷积的速度也决定了计算的精度。原创 2024-02-27 19:46:40 · 1812 阅读 · 0 评论 -
信号系统之线性图像处理
这就是 (d) 的创建方式,考虑了图像周边的暗带。也就是说,亮度平滑地降低到定义图像外部的像素值零。幸运的是,原创 2024-02-24 21:38:52 · 1689 阅读 · 2 评论 -
信号系统之傅里叶变换属性
如图10-12a所示,通过压缩样本所在的底层连续曲线,然后对新的连续曲线进行重新采样以找到新的离散信号来压缩离散信号。同样,离散信号的扩展过程如(e)所示。当离散信号被压缩时,信号中的事件(如脉冲的宽度)发生在较少数量的样本上。同样,扩展信号中的事件发生在更多的样本上。查看此过程的等效方法是保持底层连续波形相同,但以不同的采样率重新采样。例如,请看图 10-13a,这是一个由 50 个样本组成的离散高斯波形。在(b)中,同一条基础曲线由400个样本表示。原创 2024-02-23 22:39:36 · 1252 阅读 · 0 评论 -
信号系统之离散傅里叶变换
为什么使用正弦波而不是方波或三角波? 请记住,信号可以通过无数种方式进行分解。分解的目标是最终得到比原始信号更容易处理的东西。例如,脉冲分解允许一次检查一个点的信号,从而产生了强大的卷积技术。分量正弦波和余弦波比原始信号更简单,因为它们具有原始信号所没有的特性:正弦保真度。系统的正弦输入保证产生正弦输出。只有信号的幅度和相位可以改变;频率和波形必须保持不变。正弦波是唯一具有这种有用特性的波形。虽然正方形和三角形分解是可能的,但它们没有普遍有用的理由。一般术语:傅里叶变换,可以分为四类,由可能遇到的四种基本类原创 2024-02-21 20:43:23 · 1313 阅读 · 0 评论 -
信号系统之连续信号处理
单位幅度平方脉冲的导数是两个脉冲,第一个脉冲的面积为 1,第二个的面积为负 1。由于时域信号是周期性的,因此只需要在单个周期内评估正弦波和余弦波的相关性,即 -T/2 到 T/2、0 到 T、-T 到 0 等。选择不同的极限会使数学不同,但最终的答案总是一样的。例如,如果时域以 1000 赫兹重复,则频谱将包含 1000 赫兹的一次谐波、2000 赫兹的二次谐波、3000 赫兹的三次谐波,依此类推。与离散信号一样,输出信号中的每个瞬时值都受到输入信号的一部分的影响,该部分由左右翻转的脉冲响应加权。原创 2024-02-20 23:49:32 · 1715 阅读 · 0 评论 -
信号系统之窗口正弦滤波器
图 16-7a 显示了 201 点低通滤波器的频率响应,该滤波器是通过将 101 点布莱克曼窗口正弦与自身卷积而形成的(如果确实需要超过-100dB的阻带衰减,则应使用双精度。其中 BW 是过渡带的宽度,从曲线几乎不离开 1 的地方到几乎达到零的地方(例如,曲线的 99% 到 1%)测量。由于卷积所需的时间与信号的长度成正比,方程 16-3 表示计算时间(M 的值)和滤波器锐度(BW 的值)之间的权衡。例如,汉明窗口产生的通带纹波为 0.2%,阻带衰减(即阻带中的纹波)为 0.2%。,从而改善频率响应。原创 2024-02-19 19:49:22 · 2624 阅读 · 0 评论 -
信号系统之数据压缩
1 数据压缩策略表 27-1 显示了对数据压缩算法进行分类的两种不同方法。在(a)中,这些方法被归类为无损或有损(lossless or loss)。无损技术意味着恢复的数据文件与原始文件相同。这对于许多类型的数据是绝对必要的,例如:可执行代码、文字处理文件、表格数字等。此类信息不能放错哪怕是一点。相比之下,表示图像和其他采集信号的数据文件不必保持完美的状态以进行存储或传输。所有真实世界的测量都固有地包含一定量的噪声。如果对这些信号所做的更改类似于少量的额外噪声,则不会造成任何伤害。允许这种类型退化的压缩原创 2024-02-19 19:23:35 · 1258 阅读 · 0 评论 -
信号系统之神经网络
1 目标检测科学家和工程师经常需要知道是否存在特定的物体或条件。例如,地球物理学家在地球上探索石油,医生检查病人是否有疾病,天文学家在宇宙中寻找外星智慧,等等。这些问题通常涉及将采集的数据与阈值进行比较。如果超过阈值,则视为存在目标(所寻求的对象或条件)。例如,假设发明了一种用于检测人类癌症的设备。该设备在患者身上挥舞,视频屏幕上会弹出一个 介于 0 和 30 之间的数字。低数字对应于健康受试者,而高数字表示存在癌组织。发现该设备运行良好,但并不完美,偶尔会出错。问题是:如何使用这个系统来造福被检查的患原创 2024-02-18 19:59:39 · 1319 阅读 · 0 评论 -
信号系统之移动平均滤波器
在(b)和(c)中,移动平均滤波器的平滑作用降低了随机噪声的幅度(好),但也降低了边缘的清晰度(坏)。在所有可能使用的线性滤波器中,移动平均线在给定的边缘锐度下产生的噪声最低。如果上升时间是从步长的 0% 到 100% 测量的,则移动平均滤波器是可以做的最好的,如前所述。它是目前最快的数字滤波器。例如,在 10 点移动平均线过滤器中,索引 可以从 0 到 11(单侧平均)或 -5 到 5(对称平均)。移动平均滤波器不仅非常适合许多应用,而且是常见问题的最佳选择,可减少随机白噪声,同时保持最敏锐的阶跃响应。原创 2024-02-18 19:31:22 · 1984 阅读 · 0 评论 -
信号系统之卷积性质
最简单的脉冲响应是一个δ函数,如图7-1所示。也就是说,输入上的脉冲在输出上产生相同的脉冲。这意味着所有信号都毫无变化地通过系统。将任何信号与 δ函数进行卷积都会产生完全相同的信号。从数学上来说,可以这样写:这个属性使得 δ函数成为卷积的恒等式。这类似于 0 是加法的恒等式 (a + 0 = a),1 是乘法的恒等式 (a×1 = a)。此类系统是数据存储、通信和测量的理想选择。 DSP 的大部分内容都涉及在系统中传递信息而不发生改变或降级。图 7-1b 显示了对 δ函数脉冲响应的轻微修改。如果δ函数的幅度原创 2024-02-17 13:37:46 · 1904 阅读 · 0 评论 -
信号系统之滤波详解
1 过滤的基础通常希望使用信号的幅度,而不是它的功率。例如,假设一个增益为20dB的放大器。根据定义,这意味着信号中的功率增加了 100 倍。由于幅度与功率的平方根成正比,因此输出幅度是输入幅度的 10 倍。虽然 20dB 意味着功率的 100 倍,但它仅意味着幅度的 10 倍。每 20 分贝意味着振幅变化了 10 倍。在等式形式中:上述方程使用以 10 为底的对数;但是,许多计算机语言仅提供基本 E 对数的功能。可以通过修改上述公式来使用自然对数:dB=4.342945log(P2/P1)dB原创 2024-02-06 21:10:25 · 2964 阅读 · 0 评论 -
信号系统之线性系统详解
信号描述了一个参数如何随另一个参数变化。例如,电子电路中的电压随时间变化,或图像中随距离变化的亮度。系统是响应输入信号而产生输出信号的任何过程。如图中的框图所示。有几个规则用于命名信号:如果一个系统具有两个数学性质:均匀性(homogeneity)和可加性(additivity),则称为线性(linear)。如果能证明一个系统同时具有这两个属性,那么就证明了这个系统是线性的。同样,如果能证明一个系统没有一个或两个属性,就证明了它不是线性的。第三个属性,即移位不变性(shift invariance),不是线原创 2024-02-06 20:17:38 · 2227 阅读 · 0 评论 -
小波理论与应用:理解小波
来自源的信号通常处于时域。例如正弦信号、生物医学信号等。任何时域信号都可以使用数学变换进行处理或变换到频域(谱域)。傅里叶变换是一种流行或著名的变换,它将时域信号转换为频域信号,而不失一般性。在绘制时域信号时,在x 轴上使用时间,在y 轴上使用幅度。信号中存在的隐藏信息无法在时域中揭示,因此需要变换域。信号的频谱就是信号的频率内容(频谱分量)。信号的频谱描述了信号中存在的所有频率。绘制频域时,在x 轴上使用频率,在y轴上使用幅度。通常对于任何信号,如果频率成分不随时间变化,则称为平稳信号。原创 2024-01-01 14:43:14 · 1251 阅读 · 0 评论 -
小波如何让研究人员转换和理解数据?
法国数学家伊夫·迈耶(Yves Meyer)是巴黎高等师范学院的教授,当时他正在复印机前等待轮到他,这时一位同事向他展示了莫雷特和理论物理学家亚历克斯·格罗斯曼(Alex Grossmann)关于小波的论文。的形式接收他们的数据,这意味着随着时间的推移,信息流不断演变,例如地球物理学家聆听从地下岩层反弹的声波,或者数据科学家研究通过扫描图像获得的电数据流。方面的许多改进打开了大门,”比利时皇家天文台的应用数学家和天体物理学家Véronique Delouille说,他使用小波来分析太阳的图像。原创 2023-12-28 22:14:46 · 955 阅读 · 0 评论 -
如何分析信号的频率信息?
当信号的频率信息是已知的,或者近似已知的,则采样频率容易选择,选择最大采样频率的2倍以上(奈奎斯特采样)。这里,将讨论信号频率未知的情况。尤其是,考虑如何避免混叠错误。原创 2023-12-26 19:27:23 · 2562 阅读 · 0 评论 -
数字信号的理解
数字信号处理经常与实际的数字系统相混淆。这两个术语都暗示了不同的概念。数字信号处理在本质上比实际的数字系统稍微抽象一些。数字系统是涉及的硬件、二进制代码或数字域。这两个术语之间的普遍混淆可能是因为它们都如此交织在一起。DSP几乎可以在任何数字平台上完成,但有些系统是专门为DSP设计的。数字信号处理,可以简单地定义为在数字域中处理信号,以使用数学计算来分析、测量和操作所述信号。数字信号处理涉及信息的交换,以便可以观察、分析所述信息或将其转换为单独的信号形式。原创 2023-12-22 23:13:43 · 1214 阅读 · 0 评论 -
模拟信号和数字信号的区别
许多系统使用模拟信号来传输信息。这些信号在值和时间上都是连续的。随着数字信号的到来,模拟信号的使用有所下降。简而言之,所有自然的信号都是模拟信号。数字信号:将代表图像的 连续(模拟)信号 转换为 离散(数字)信号 的过程。原创 2023-12-20 23:00:17 · 6937 阅读 · 0 评论