训练分类网络时,出现loss是nan的情况

问题记录:

我在训练简单的BPNN网络做分类时,loss从一开始就是nan,一直到训练结束,accuracy也在0.5左右摆动。

解决方法:

经过检查发现,是我的输入中有nan 和inf的情况,进一步检查之后发现,原因是原始数据集在做归一化的时候,把数据归一化到了(0,1),但是后边有除法操作,因此把数据归一化范围调整到(0.1,1)。问题解决

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值