下面内容总结自博客 http://blog.csdn.net/v_july_v/article/details/41209515 和 http://blog.csdn.net/hxxiaopei/article/details/7617838 以及 百度百科
首先介绍主题模型的概念:
顾名思义,主题模型是对文本隐含主题的建模。PLSA 和 LDA 都是文档主题生成模型,包含词,主题和文档三层结构,该模型可以将文档集中的每篇文档的主题以概率分布的形式给出,后利用这些主题分布进行主题聚类或文本分类。所谓生成模型,就是说,我们认为一篇文章的每个词都是通过“以一定的概率选择了某个主题,并从这个主题中以一定概率选择某个词语”这样一个过程得到的。文档到主题服从多项式分布,主题到词服从多项式分布。
两者均是非监督机器学习技术,可以用来识别大规模文档集或这语料库中潜藏的主题信息。他们采用了词袋(bag of words)的方法, 这种方法将每一篇文档视为一个词频向量,从而将文本信息转化为了易于建模的数字信息。但是词袋方法没有考虑词与词之间的顺序,这简化了问题的复杂性,同时也为模型的改进提供了契机。每一篇文档代表了主题所构成的一个概率分布,而每一个主题又代表了很多单词所构成的一个概率分布。
对每一篇文档,生成过程大致如下:
1,对每一篇文档,从主题分布中抽取一个主题
2, 从被抽出的主题所对应的单词分布中抽取一个单词
3, 重复上述过程直至遍历文档中的每一个单词
上述介绍了如何生成一篇文档,然而当我们看到一篇文档后,