[TJOI2019] 唱、跳、rap和篮球 (二项式反演 NTT)

题意

4 4 4 类数量分别为 a , b , c , d a,b,c,d a,b,c,d 的物品,求出长度为 n n n 的所有不包含 abcd 子串的序列的方案数,对 998   244   353 998\, 244 \, 353 998244353 取模。

分析:

此题比较像 2022 牛客多校2 E,考虑将 abcd 捆绑,我们可以先算出至少存在 i i iabcd 子串的方案数,那么会有 n − 4 × i + i = n − 3 × i n - 4 \times i + i = n - 3 \times i n4×i+i=n3×i 个位置,从中选出 i i i 个位置的方案数为 ( n − 3 × i i ) \dbinom{n - 3 \times i}{i} (in3×i),那么现在要解决的问题是从剩下 n − 4 × i n - 4 \times i n4×i 个位置随意选 a , b , c , d a,b,c,d a,b,c,d 的方案数,我们可以写出它们的生成函数,记
F k ( x ) = ∑ i = 0 k x i i ! F_k(x) = \sum_{i = 0} ^ {k} \frac{x ^ i}{i!} Fk(x)=i=0ki!xi
那么 a , b , c , d a,b,c,d a,b,c,d 的生成函数分别为 F a − i ( x ) , F b − i ( x ) , F c − i ( x ) , F d − i ( x ) F_{a - i}(x),F_{b - i}(x),F_{c - i}(x),F_{d - i}(x) Fai(x),Fbi(x),Fci(x),Fdi(x),所以方案数为 ( n − 4 × i ) ! × [ x n − 4 × i ] F a − i ( x ) ∗ F b − i ( x ) ∗ F c − i ( x ) ∗ F d − i ( x ) (n - 4 \times i)! \times [x ^ {n - 4 \times i}]F_{a - i}(x) * F_{b - i}(x) * F_{c - i}(x) * F_{d - i}(x) (n4×i)!×[xn4×i]Fai(x)Fbi(x)Fci(x)Fdi(x),我们现在求出了至少为 i i i 的方案数,可以用二项式反演求出恰好为 0 0 0 的方案数,那么答案就是
∑ i = 0 min ⁡ ( a , b , c , d ) ( − 1 ) i × ( n − 3 × i i ) × ( n − 4 × i ) ! × [ x n − 4 × i ] F a − i ( x ) ∗ F b − i ( x ) ∗ F c − i ( x ) ∗ F d − i ( x ) \sum_{i = 0} ^ {\min(a,b,c,d)} (-1) ^ i \times \binom{n - 3 \times i}{i} \times (n - 4 \times i)! \times [x ^ {n - 4 \times i}]F_{a - i}(x) * F_{b - i}(x) * F_{c - i}(x) * F_{d - i}(x) i=0min(a,b,c,d)(1)i×(in3×i)×(n4×i)!×[xn4×i]Fai(x)Fbi(x)Fci(x)Fdi(x)

代码:

#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include <bits/stdc++.h>
using namespace std;
using i64 = long long;
constexpr int mod = 998244353;
int norm(int x) {
    if (x < 0) {
        x += mod;
    }
    if (x >= mod) {
        x -= mod;
    }
    return x;
}
template<class T>
T power(T a, int b) {
    T res = 1;
    for (; b; b /= 2, a *= a) {
        if (b % 2) {
            res *= a;
        }
    }
    return res;
}
struct Z {
    int x;
    Z(int x = 0) : x(norm(x)) {}
    int val() const {
        return x;
    }
    Z operator-() const {
        return Z(norm(mod - x));
    }
    Z inv() const {
        assert(x != 0);
        return power(*this, mod - 2);
    }
    Z &operator*=(const Z &rhs) {
        x = i64(x) * rhs.x % mod;
        return *this;
    }
    Z &operator+=(const Z &rhs) {
        x = norm(x + rhs.x);
        return *this;
    }
    Z &operator-=(const Z &rhs) {
        x = norm(x - rhs.x);
        return *this;
    }
    Z &operator/=(const Z &rhs) {
        return *this *= rhs.inv();
    }
    friend Z operator*(const Z &lhs, const Z &rhs) {
        Z res = lhs;
        res *= rhs;
        return res;
    }
    friend Z operator+(const Z &lhs, const Z &rhs) {
        Z res = lhs;
        res += rhs;
        return res;
    }
    friend Z operator-(const Z &lhs, const Z &rhs) {
        Z res = lhs;
        res -= rhs;
        return res;
    }
    friend Z operator/(const Z &lhs, const Z &rhs) {
        Z res = lhs;
        res /= rhs;
        return res;
    }
    friend istream &operator>>(istream &is, Z &a) {
        i64 v;
        is >> v;
        a = Z(v);
        return is;
    }
    friend ostream &operator<<(ostream &os, const Z &a) {
        return os << a.val();
    }
};
vector<int> rev;
vector<Z> roots{0, 1};
void dft(vector<Z> &a) {
    int n = a.size();
    if (int(rev.size()) != n) {
        int k = __builtin_ctz(n) - 1;
        rev.resize(n);
        for (int i = 0; i < n; i ++) {
            rev[i] = rev[i >> 1] >> 1 | (i & 1) << k;
        }
    }
    for (int i = 0; i < n; i ++) {
        if (rev[i] < i) {
            swap(a[i], a[rev[i]]);
        }
    }
    if (int(roots.size()) < n) {
        int k = __builtin_ctz(roots.size());
        roots.resize(n);
        while ((1 << k) < n) {
            Z e = power(Z(3), (mod - 1) >> (k + 1));
            for (int i = 1 << (k - 1); i < (1 << k); i ++) {
                roots[i << 1] = roots[i];
                roots[i << 1 | 1] = roots[i] * e;
            }
            k ++;
        }
    }
    for (int k = 1; k < n; k *= 2) {
        for (int i = 0; i < n; i += 2 * k) {
            for (int j = 0; j < k; j ++) {
                Z u = a[i + j], v = a[i + j + k] * roots[k + j];
                a[i + j] = u + v, a[i + j + k] = u - v;
            }
        }
    }
}
void idft(vector<Z> &a) {
    int n = a.size();
    reverse(a.begin() + 1, a.end());
    dft(a);
    Z inv = (1 - mod) / n;
    for (int i = 0; i < n; i ++) {
        a[i] *= inv;
    }
}
struct Poly {
    vector<Z> a;
    Poly() {}
    Poly(const vector<Z> &a) : a(a) {}
    Poly(const initializer_list<Z> &a) : a(a) {}
    int size() const {
        return a.size();
    }
    void resize(int n) {
        a.resize(n);
    }
    Z operator[](int idx) const {
        if (idx < size()) {
            return a[idx];
        } else {
            return 0;
        }
    }
    Z &operator[](int idx) {
        return a[idx];
    }
    Poly mulxk(int k) const {
        auto b = a;
        b.insert(b.begin(), k, 0);
        return Poly(b);
    }
    Poly modxk(int k) const {
        k = min(k, size());
        return Poly(vector<Z>(a.begin(), a.begin() + k));
    }
    Poly divxk(int k) const {
        if (size() <= k) {
            return Poly();
        }
        return Poly(vector<Z>(a.begin() + k, a.end()));
    }
    friend Poly operator+(const Poly &a, const Poly &b) {
        vector<Z> res(max(a.size(), b.size()));
        for (int i = 0; i < int(res.size()); i ++) {
            res[i] = a[i] + b[i];
        }
        return Poly(res);
    }
    friend Poly operator-(const Poly &a, const Poly &b) {
        vector<Z> res(max(a.size(), b.size()));
        for (int i = 0; i < int(res.size()); i ++) {
            res[i] = a[i] - b[i];
        }
        return Poly(res);
    }
    friend Poly operator*(Poly a, Poly b) {
        if (a.size() == 0 || b.size() == 0) {
            return Poly();
        }
        int sz = 1, tot = a.size() + b.size() - 1;
        while (sz < tot) {
            sz *= 2;
        }
        a.a.resize(sz);
        b.a.resize(sz);
        dft(a.a);
        dft(b.a);
        for (int i = 0; i < sz; i ++) {
            a.a[i] = a[i] * b[i];
        }
        idft(a.a);
        a.resize(tot);
        return a;
    }
    friend Poly operator*(Z a, Poly b) {
        for (int i = 0; i < int(b.size()); i ++) {
            b[i] *= a;
        }
        return b;
    }
    friend Poly operator*(Poly a, Z b) {
        for (int i = 0; i < int(a.size()); i ++) {
            a[i] *= b;
        }
        return a;
    }
    Poly &operator+=(Poly b) {
        return (*this) = (*this) + b;
    }
    Poly &operator-=(Poly b) {
        return (*this) = (*this) - b;
    }
    Poly &operator*=(Poly b) {
        return (*this) = (*this) * b;
    }
    Poly deriv() const {
        if (a.empty()) {
            return Poly();
        }
        vector<Z> res(size() - 1);
        for (int i = 0; i < size() - 1; i ++) {
            res[i] = (i + 1) * a[i + 1];
        }
        return Poly(res);
    }
    Poly integr() const {
        vector<Z> res(size() + 1);
        for (int i = 0; i < size(); i ++) {
            res[i + 1] = a[i] / (i + 1);
        }
        return Poly(res);
    }
    Poly inv(int m) const {
        Poly x{a[0].inv()};
        int k = 1;
        while (k < m) {
            k *= 2;
            x = (x * (Poly{2} - modxk(k) * x)).modxk(k);
        }
        return x.modxk(m);
    }
    Poly log(int m) const {
        return (deriv() * inv(m)).integr().modxk(m);
    }
    Poly exp(int m) const {
        Poly x{1};
        int k = 1;
        while (k < m) {
            k *= 2;
            x = (x * (Poly{1} - x.log(k) + modxk(k))).modxk(k);
        }
        return x.modxk(m);
    }
    Poly pow(int k, int m) const {
        int i = 0;
        while (i < size() && a[i].val() == 0) {
            i ++;
        }
        if (i == size() || 1LL * i * k >= m) {
            return Poly(vector<Z>(m));
        }
        Z v = a[i];
        auto f = divxk(i) * v.inv();
        return (f.log(m - i * k) * k).exp(m - i * k).mulxk(i * k) * power(v, k);
    }
    Poly sqrt(int m) const {
        Poly x{1};
        int k = 1;
        while (k < m) {
            k *= 2;
            x = (x + (modxk(k) * x.inv(k)).modxk(k)) * ((mod + 1) / 2);
        }
        return x.modxk(m);
    }
    Poly mulT(Poly b) const {
        if (b.size() == 0) {
            return Poly();
        }
        int n = b.size();
        reverse(b.a.begin(), b.a.end());
        return ((*this) * b).divxk(n - 1);
    }
};
vector<Z> fact, infact;
void init(int n) {
    fact.resize(n + 1), infact.resize(n + 1);
    fact[0] = infact[0] = 1;
    for (int i = 1; i <= n; i ++) {
        fact[i] = fact[i - 1] * i;
    }
    infact[n] = fact[n].inv();
    for (int i = n; i; i --) {
        infact[i - 1] = infact[i] * i;
    }
}
Z Combine(int n, int m) {
    if (n < 0 || m < 0 || n < m) return Z(0);
    return fact[n] * infact[n - m] * infact[m];
}
signed main() {
    init(1e5);
    cin.tie(0) -> sync_with_stdio(0);
    int n, a, b, c, d;
    cin >> n >> a >> b >> c >> d;
    Z res;
    for (int i = 0, sign = 1; i <= min({a, b, c, d}); i ++, sign *= -1) {
        vector<Z> A(a - i + 1), B(b - i + 1), C(c - i + 1), D(d - i + 1);
        for (int j = 0; j <= a - i; j ++) {
            A[j] = infact[j];
        }
        for (int j = 0; j <= b - i; j ++) {
            B[j] = infact[j];
        }
        for (int j = 0; j <= c - i; j ++) {
            C[j] = infact[j];
        }
        for (int j = 0; j <= d - i; j ++) {
            D[j] = infact[j];
        }
        Poly ans = Poly(A) * Poly(B) * Poly(C) * Poly(D);
        res += Z(sign) * Combine(n - 3 * i, i) * ans[n - 4 * i] * fact[n - 4 * i];
    }
    cout << res << "\n";
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值