《谱图论》读书笔记(第三章)

目录

 

Chapter 3.直径和特征值(Diameters and eigenvalues)

3.1 图的直径(The diameter of a graph)

3.2 特征值和两个子集之间的距离

Theorem 3.1.

Corollary 3.2.

Theorem 3.3.

Lemma 3.4.

Corollary 3.5.

Lemma 3.6.

Lemma 3.7.

Lemma 3.8.

3.3 许多子集之间的特征值和距离(Eigenvalues and distances among many subsets)

Lemma 3.9.

Theorem 3.10.

Theorem 3.11.


Chapter 3.直径和特征值(Diameters and eigenvalues

3.1 图的直径(The diameter of a graph

In a graph , the distance between two vertices u and v, denoted by , is defined to be the length of a shortest path joining u and v in . (It is possible to define the diameter by various more general measures). The diameter of , denoted by , is the maximum distance over all pairs of vertices in . The diameter is one of the key invariants in a graph which is not only of theoretical interest but also has a wide range of applications. When graphs are used as models for communication networks, the diameter corresponds to the delays in passing messages through the network, and therefore plays an important role in performance analysis and cost optimization.

Although the diameter is a combinatorial invariant, it is closely related to eigenvalues. This connection is based on the following simple observation:

Let M denote an  matrix with rows and columns indexed by the vertices of . Suppose  satisfies the property that  if  and  are not adjacent. Furthermore, suppose we can show that for some integer and some polynomial  of degree , we have

for all  and . Then we can conclude that the diameter  satisfies:

Suppose we take  to be the sum of the adjacency matrix and the identity matrix and

the polynomial  to be just  The following inequality for regular graphs which are not complete graphs can then be derived (which will be proved in Section 3.2 as a corollary to Theorem 3.1; also see [51]):

3.1

Here,  basically only depends on . For example, we can take  if . In general, we can slightly improve (3.1) by using the same “spectrum shifting” trick as in Section 1.5 (see Section 3.2). Namely, we define , and we conclude

 

We note that for some graphs the above bound gives a pretty good upper bound for the diameter. For example, for k-regular Ramanujan graphs, we have  so we get  which is within a factor of 2 of the best possible bound.

The bound in (3.1) can be further improved by choosing pt to be the Chebyshev polynomial of degree t. We can then replace the logarithmic function by cosh-1 (see [53] and Theorem 3.3):

 

 

The above inequalities can be generalized in several directions. Instead of con­sidering distances between two vertices, we can relate the eigenvalue Ai to distances between two subsets of vertices (see Section 3.2). Furthermore, for any , we can relate the eigenvalue  to distances among  distinct subsets of vertices (see Section 3.3).

We will derive several versions of the diameter-eigenvalue inequalities. From these inequalities, we can deduce a number of isoperimetric inequalities which are closely related to expander graphs which will also be discussed in Chapter 6.

It is worth mentioning that the above discrete methods for bounding eigenvalues can be used to derive new eigenvalue upper bounds for compact smooth Riemannian manifolds  This will be discussed in the last section of this chapter.

In contrast to many other more complicated graph invariants, the diameter is easy to compute. The diameter is the least integer  such that the matrix  has the property that all entries of  are nonzero. This can be determined by using  iterations of matrix multiplication. Using the current best known bound  for matrix multiplication where

)

this diameter algorithm requires at most  steps. The problem of determining distances of all pairs of vertices for an undirected graph can also be done in  time. Seidel [223] gave a simple recursive algorithm by reducing this problem for a graph  to a graph G  in which  if . (For directed graphs, an  algorithm can be found in [10].)

Another related problem is to find shortest paths between all pairs of vertices, which can be easily done in  steps (in fact  is enough for a graph on  vertices and  edges). Apparently, we cannot compute all shortest paths explicitly in O time since some graphs can have  pairs of vertices having shortest paths of length at least  each. However, we can compute a data structure that allows all shortest paths be constructed in time proportional to their lengths. For example, a matrix has its -entry to be a neighbor of  in a shortest path connecting  and . Seidel gave a randomized algorithm  to compute such a matrix in expected time .

 

3.2 特征值和两个子集之间的距离

For two subsets of vertices in , the distance between  and , denoted by , is the minimum distance between a vertex in  and a vertex in , i.e.,

Let  denote the complement of  in .

Theorem 3.1.

Suppose  is not a complete graph. For  and , we have

3.3

Corollary 3.2.

Suppose G is a regular graph which is not complete. Then

Theorem 3.3.

Suppose G is not a complete graph. For and , we have

Lemma 3.4.

For all , we have

Corollary 3.5.

For  with , where G is not a complete graph, we have

where

Lemma 3.6.

For  and any integer ,

where

Lemma 3.7.

For an integer  and   with , we have

where

Lemma 3.8.

For  with  and any integer ,

 

 

3.3 许多子集之间的特征值和距离(Eigenvalues and distances among many subsets)

Lemma 3.9.

Let  denote  arbitrary vectors in d-dimensional Euclidean space. Then there are two of them, say, such that .

Theorem 3.10.

Suppose G is not a complete graph. For  we have

if . and , for  i=0,1,⋯,k

Theorem 3.11.

For  , we have

if  and  

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值