谱图理论(spectral graph theory)

谱图理论(spectral graph theory)通过特征值和特征向量解析矩阵运动特性,其中瑞利熵揭示了矩阵中速度最大方向。在机器学习中,这一理论用于图像分割,如将像素间的相似性构建为图,通过计算相似性和特征向量实现有效切分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

@[TOC](谱图理论(spectral graph theory))

1、如何理解特征值和特征向量

1.1特征向量描述运动的方向

在这里插入图片描述
我们知道,对于矩阵 A A A可以对角化的话,可以通过相似矩阵进行下面这样的特征值分解: A = P Λ P − 1 A=P\Lambda P^{-1} A=PΛP1

w h e r e where

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值