决策树:像做选择题一样做分类

在机器学习的工具箱里,决策树是个特别 “接地气” 的算法。它的思路就像咱们平时做决定时列的选择题流程,一步一步问问题,最后得出结论。今天就用大白话来讲讲决策树到底是啥,咋工作的,再拿实际例子说说它咋给数据分类。

决策树到底是啥?就是一串选择题

决策树,光听名字就知道它像棵树 —— 有根、有枝、有叶子。简单说,它就是把分类过程变成一串 “是 / 否” 的选择题,从根节点开始问,顺着分支一步步往下走,最后走到叶子节点,就能得到分类结果了。

树的零件得认清

  • 根节点:第一个问题,也是最重要的选择题,比如 “今天天气好吗?”
  • 非叶子节点与分支:中间的问题和选项,比如天气好的话问 “有聚会吗?”,天气不好的话问 “作业急吗?”
  • 叶子节点:最后答案,比如 “去打球”“在家学习”“看电视”。

不管是分类(比如判断是不是鱼类、天气好不好)还是回归(比如预测房价、成绩),决策树都能用,核心就是这套 “提问 - 分支 - 结论” 的流程。

策树咋训练?关键在 “怎么问问题”

训练决策树,说白了就是确定 “先问啥,再问啥”。测试的时候就简单了,顺着树走一遍就行。难就难在怎么构造这棵树 —— 第一个问题问啥?每个问题下面分几个选项?这得有讲究。

目标:让分类越来越 “纯”

咱们希望每个问题都能把数据分得更清楚。比如判断 “要不要打球”,第一个问题最好能把 “大概率打球” 和 “大概率不打球” 的情况分开,就像选个 “大当家” 来镇场子,后面的问题再当 “二当家” 细化分类。

那怎么判断哪个问题分的效果好呢?这就得靠 “熵” 和 “信息增益” 这两个工具了。

用 “熵” 衡量混乱程度

熵是个听起来玄乎其实特简单的概念 ——表示数据的混乱程度。数据越乱,熵越大;越整齐,熵越小。

公式长这样:H(X)=−∑pi​×logpi​(不用记公式,懂意思就行)。

  • 如果一群数据全是同一类(比如 10 个样本全是 “是”),熵就是 0,一点不乱。
  • 如果一半是 “是” 一半是 “否”,熵最大,乱成一锅粥。
  • 比如 A 集合 [1,1,1,1,1,1,1,1,2,2](大部分是 1),B 集合 [1,2,3,4,5,6,7,8,9,1](啥都有),显然 B 的熵更大。

用 “信息增益” 选最好的问题

信息增益就是说,用某个特征(问题)分类后,数据的混乱程度(熵)减少了多少。减少得越多,这个特征就越好,越适合当当前的节点。

举个例子:14 天打球数据里,有 9 天打、5 天不打,初始熵是 0.940(有点混乱)。

  • 用 “天气(outlook)” 分类:晴天(sunny)时熵 0.971,阴天(overcast)时熵 0,雨天(rainy)时熵 0.971。算下来总熵变成 0.693,信息增益就是 0.940-0.693=0.247。
  • 再算其他特征(温度、湿度、风力)的信息增益,哪个最大就选哪个当根节点。

就像挑领导,谁能把团队管理得更整齐(混乱减少最多),谁就当老大。选好根节点后,再在每个分支里用同样的方法选下一个问题,直到所有数据都分清楚。

总结一下

决策树就像咱们平时做决定的思路,把复杂问题拆成一串小选择题,用 “熵” 看混乱程度,用 “信息增益” 挑最好的问题。它的好处是简单易懂,分类过程一目了然,就像跟着流程图走,哪怕不懂算法的人也能看明白。不管是给电影分类、判断是否是鱼类,还是生活中的各种决策场景,决策树都能帮咱们理清楚思路,一步步找到答案。下次再听到 “决策树”,就想想那些让你做选择的选择题流程,其实原理都差不多!

import numpy as np # 计算熵 def calcInfoEntropy(label): ''' input: label(narray):样本标签 output: InfoEntropy(float):熵 ''' label_set = set(label) InfoEntropy = 0 for l in label_set: count = 0 for j in range(len(label)): if label[j] == l: count += 1 # 计算标签在数据集中出现的概率 p = count / len(label) # 计算熵 InfoEntropy -= p * np.log2(p) return InfoEntropy #计算条件熵 def calcHDA(feature,label,index,value): ''' input: feature(ndarray):样本特征 label(ndarray):样本标签 index(int):需要使用的特征列索引 value(int):index所表示的特征列中需要考察的特征值 output: HDA(float):信息熵 ''' count = 0 # sub_feature和sub_label表示根据特征列和特征值分割出的子数据集中的特征和标签 sub_feature = [] sub_label = [] for i in range(len(feature)): if feature[i][index] == value: count += 1 sub_feature.append(feature[i]) sub_label.append(label[i]) pHA = count / len(feature) e = calcInfoEntropy(sub_label) HDA = pHA * e return HDA #计算信息增益 def calcInfoGain(feature, label, index): ''' input: feature(ndarry):测试用例中字典里的feature label(ndarray):测试用例中字典里的label index(int):测试用例中字典里的index,即feature部分特征列的索引。该索引指的是feature中第几个特征,如index:0表示使用第一个特征来计算信息增益。 output: InfoGain(float):信息增益 ''' base_e = calcInfoEntropy(label) f = np.array(feature) # 得到指定特征列的值的集合 f_set = set(f[:, index]) sum_HDA = 0 # 计算条件熵 for value in f_set: sum_HDA += calcHDA(feature, label, index, value) # 计算信息增益 InfoGain = base_e - sum_HDA return InfoGain # 获得信息增益最高的特征 def getBestFeature(feature, label): ''' input: feature(ndarray):样本特征 label(ndarray):样本标签 output: best_feature(int):信息增益最高的特征 ''' #*********Begin*********# #*********End*********# return best_feature #创建决策树 def createTree(feature, label): ''' input: feature(ndarray):训练样本特征 label(ndarray):训练样本标签 output: tree(dict):决策树模型 ''' #*********Begin*********# # 样本里都是同一个label没必要继续分叉了 # 样本中只有一个特征或者所有样本的特征都一样的话就看哪个label的票数高 # 根据信息增益拿到特征的索引 # 拿到bestfeature的所有特征值 # 构建对应特征值的子样本集sub_feature, sub_label # 递归构建决策树 #*********End*********# return tree #决策树分类 def dt_clf(train_feature,train_label,test_feature): ''' input: train_feature(ndarray):训练样本特征 train_label(ndarray):训练样本标签 test_feature(ndarray):测试样本特征 output: predict(ndarray):测试样本预测标签 ''' #*********Begin*********# #创建决策树 #根据tree与特征进行分类 #如果tree是叶子节点,返回tree #根据特征值走入tree中的分支 #如果分支依然是tree #根据tree与特征进行分类 #*********End*********# return predict 根据提示,在右侧编辑器 Begin-End 部分补充代码, 填写 fit(self, feature, label) 函数,实现 ID3 算法,要求决策树保存在 self.tree 中。其中: feature:训练集数据,类型为ndarray,数值全为整数 label:训练集标签,类型为ndarray,数值全为整数 填写 predict(self, feature) 函数,实现预测功能,并将标签返回,其中: feature:测试集数据,类型为 ndarray,数值全为整数。(PS:feature中有多条数据)
03-28
<think>好的,我现在需要帮助用户完成一个决策树的实现,具体是要填充fit和predict函数,其中fit函数使用ID3算法,并且将决策树保存在self.tree中。而predict函数则要对测试数据进行预测。 首先,我需要仔细理解用户提供的代码结构。用户已经给出了一些辅助函数,比如计算熵、条件熵、信息增益,以及选择最佳特征的函数。但用户需要实现的是fit和predict方法,这可能属于一个类的一部分,比如一个决策树分类器的类。所以可能用户希望这些方法属于某个类,比如DecisionTreeClassifier,而fit方法会训练模型,生成self.tree,predict方法使用生成的树进行预测。 现在,用户的问题是需要填写fit和predict函数,而用户提供的代码框架中有createTree函数,可能fit函数的作用就是调用createTree来生成self.tree。而predict函数则需要遍历每个测试样本,根据决策树的结构进行分类。 首先看fit函数。根据题目描述,fit的参数是feature和label,需要生成self.tree。所以fit函数的主体可能就是将feature和label传递给createTree函数,并将结果保存到self.tree中。因此,fit函数的实现可能如下: def fit(self, feature, label): self.tree = createTree(feature, label) 不过,这里需要注意,createTree函数的实现是否正确。用户提供的createTree函数内部有一些注释,可能需要用户自己实现,但根据用户的问题,可能假设createTree已经正确实现。或者,可能用户提供的代码中createTree函数尚未完成,需要补充。但根据问题描述,用户是在要求填写fit和predict函数,而其他函数可能已经实现。因此,假设createTree函数已经正确实现,那么fit函数只需要调用它即可。 接下来是predict函数。用户提供的代码框架中有一个dt_clf函数,可能需要将其逻辑转移到predict方法中。dt_clf函数的逻辑是:首先创建决策树,然后根据tree和测试特征进行分类。而predict函数需要处理多条测试数据,因此可能需要为每个测试样本调用一个分类函数。 例如,predict函数可能需要遍历每个测试样本的特征向量,然后根据决策树的结构,递归地查找对应的叶子节点标签。例如,对于一个测试样本,从根节点开始,根据当前节点的特征索引,查看测试样本对应的特征值,选择对应的子树分支,直到到达叶子节点,返回该节点的标签。 因此,predict函数可能需要一个辅助函数,比如对单个样本进行分类。例如: def predict_one(self, tree, sample): if not isinstance(tree, dict): # 当前已经是叶子节点,返回标签 return tree feature_index = list(tree.keys())[0] feature_value = sample[feature_index] if feature_value in tree[feature_index]: subtree = tree[feature_index][feature_value] return self.predict_one(subtree, sample) else: # 处理未知特征值的情况,可能返回最常见的标签 # 这里可能需要处理,但假设测试数据特征值都存在 # 否则可能需要其他策略,比如返回默认值 # 但题目中可能假设所有特征值都存在,所以这里暂时不处理 pass 然后,在predict函数中对每个测试样本调用这个辅助函数: def predict(self, feature): predictions = [] for sample in feature: pred = self.predict_one(self.tree, sample) predictions.append(pred) return np.array(predictions) 但需要注意,原题中的dt_clf函数可能需要类似的结构,因此可能需要参考其实现方式。 现在回到用户的问题,用户提供的代码中有createTree函数,该函数的实现是否完整?根据用户提供的代码框架,createTree函数中有Begin和End注释,说明用户可能还没有实现这部分。但问题中的任务是否包含实现createTree?或者用户是否已经提供了正确的实现? 根据用户的问题描述,用户需要补充的代码是fit和predict函数,而其他函数如createTree可能已经实现,或者用户可能需要自己完成。但根据用户给出的代码框架,可能这些函数的部分实现是需要用户自己补充的,比如getBestFeature函数的Begin-End部分。 但根据问题中用户的具体需求,用户现在的任务是在给定的编辑器中的Begin-End部分填写fit和predict函数,所以可能其他函数如createTree和dt_clf已经由用户自己实现,或者需要根据前面的辅助函数来完成。 但现在,假设用户需要实现的fit函数是调用createTree函数来生成self.tree,而createTree函数本身是否完整?比如,在用户提供的代码中,createTree函数中的代码是否已经正确实现?例如: def createTree(feature, label): # 样本里都是同一个label没必要继续分叉了 if len(set(label)) == 1: return label[0] # 样本中只有一个特征或者所有样本的特征都一样的话就看哪个label的票数高 if feature.shape[1] == 0 or np.all(feature == feature[0]): # 返回出现次数最多的label counts = np.bincount(label) return np.argmax(counts) # 根据信息增益拿到特征的索引 best_feature = getBestFeature(feature, label) # 拿到bestfeature的所有特征值 feature_values = np.unique(feature[:, best_feature]) # 构建树 tree = {best_feature: {}} for value in feature_values: # 分割子数据集 sub_feature = feature[feature[:, best_feature] == value] sub_label = label[feature[:, best_feature] == value] # 递归构建子树 tree[best_feature][value] = createTree(sub_feature, sub_label) return tree 假设createTree函数已经正确实现,那么fit函数只需调用它即可。但用户提供的代码中,createTree的Begin-End部分需要填写,所以用户可能需要自己补充该函数。这可能意味着在用户的问题中,createTree函数尚未完成,而fit函数需要调用它,因此用户需要正确实现createTree,然后才能正确生成self.tree。 但根据当前用户的问题,用户直接需要填写的是fit和predict函数,而其他函数可能已经正确实现。或者可能用户的问题中的代码是需要用户完成整个决策树的实现,包括createTree、getBestFeature等。但是根据用户的问题描述,用户提供的代码中已有一些函数,但需要补充其中的某些部分,比如getBestFeature中的Begin-End部分。但现在用户的问题是要求填写fit和predict函数,因此可能需要将这些函数与已有的函数结合。 现在,我需要总结用户的代码结构: 用户已经定义了几个函数: - calcInfoEntropy: 计算熵 - calcHDA: 计算条件熵 - calcInfoGain: 计算信息增益 - getBestFeature: 需要用户填充,返回最佳特征的索引 - createTree: 需要用户填充,生成决策树 - dt_clf: 需要用户填充,进行分类预测 但用户的问题现在是要填写fit和predict函数,可能这些属于一个类的方法,比如: class DecisionTreeClassifier: def __init__(self): self.tree = None def fit(self, feature, label): # 调用createTree生成决策树,并保存在self.tree中 self.tree = createTree(feature, label) def predict(self, feature): # 对每个测试样本应用决策树进行分类 return dt_clf(self.tree, feature) # 可能需要调整dt_clf的参数 但原dt_clf函数的参数是train_feature, train_label, test_feature,这可能不太对。因为预测的时候不需要训练数据,所以原来的dt_clf函数可能需要修改。或者,可能dt_clf的实现应该基于已有的决策树。例如,用户提供的dt_clf函数可能有问题,可能需要调整。 原dt_clf函数的代码: def dt_clf(train_feature,train_label,test_feature): #创建决策树 tree = createTree(train_feature, train_label) #根据tree与特征进行分类 # ... 但如果是这样,那么在predict函数中,不需要重新创建树,而是使用已经训练好的self.tree。因此,正确的法是,在fit函数中生成tree,保存在self.tree中,然后在predict函数中使用这个tree进行分类,而不是在dt_clf中重新创建。因此,用户提供的dt_clf函数的实现可能不正确,或者需要调整参数,比如接受tree作为参数。 因此,用户可能需要修改dt_clf函数,使其接受tree作为参数,而不是每次都重新创建。或者,可能在predict函数中直接使用self.tree。 因此,正确的predict函数的实现可能不需要调用dt_clf,而是直接处理每个测试样本。例如: def predict(self, feature): predictions = [] for sample in feature: predictions.append(self._predict_sample(sample, self.tree)) return np.array(predictions) def _predict_sample(self, sample, tree): if not isinstance(tree, dict): return tree feature_index = list(tree.keys())[0] feature_value = sample[feature_index] sub_tree = tree[feature_index].get(feature_value) if sub_tree is None: # 处理未知的特征值,返回最常见的标签? # 或者根据其他策略处理,这里可能需要进一步考虑 return self._get_default_label() return self._predict_sample(sample, sub_tree) 但如何实现_predict_sample函数,这取决于决策树的结构。例如,假设树的结构是一个字典,每个非叶子节点用特征索引作为键,对应的值是另一个字典,键是特征值,值是对应的子树。例如,树的结构可能类似于: {best_feature: {value1: subtree1, value2: subtree2}} 在这种情况下,递归下降直到遇到叶子节点(即一个具体的标签值)。 现在,回到问题本身,用户需要实现的fit函数应该调用createTree函数,并将结果保存在self.tree中。而predict函数则需要对输入的每个样本,根据self.tree进行预测。 假设用户需要将之前的函数整合到一个类中,那么可能这些辅助函数(如calcInfoEntropy等)需要作为类的方法,或者保持为独立的函数。这可能取决于具体的代码结构。例如,在用户提供的代码中,这些函数可能是在类外部定义的,或者在类内部作为静态方法。 但根据问题描述,用户提供的代码中可能希望将fit和predict作为类的方法,而其他函数作为辅助函数。因此,假设用户需要编写一个类,其中fit方法调用createTree函数来生成决策树,并将其保存到self.tree,而predict方法则根据self.tree进行预测。 总结: - fit方法将训练数据传入createTree函数,得到决策树结构,保存到self.tree。 - predict方法遍历每个测试样本,使用self.tree进行预测,返回预测标签数组。 现在,针对用户的问题中的代码框架,用户需要填写的是fit和predict函数,其中: fit函数属于某个类,接收feature和label,生成self.tree。根据用户提供的代码中的函数,可能fit函数的实现如下: def fit(self, feature, label): self.tree = createTree(feature, label) 而predict函数的实现可能调用dt_clf函数,但原dt_clf函数需要接受已经生成的tree,而不是每次都重新创建。或者,用户需要调整dt_clf函数的逻辑,使其不需要训练数据,而直接使用现有的tree。例如,修改dt_clf函数为: def dt_clf(tree, test_feature): predict = [] for sample in test_feature: current_tree = tree while isinstance(current_tree, dict): feature_index = list(current_tree.keys())[0] feature_value = sample[feature_index] current_tree = current_tree[feature_index].get(feature_value, None) if current_tree is None: # 处理未知特征值,这里可能需要返回默认值,比如最常见的标签 # 例如,假设无法找到对应的分支,返回根节点中最常见的标签? # 这里可能需要更复杂的处理,但暂时返回一个默认值,比如0 current_tree = 0 break predict.append(current_tree) return np.array(predict) 然后在predict方法中: def predict(self, feature): return dt_clf(self.tree, feature) 但用户提供的dt_clf函数的参数是train_feature, train_label, test_feature,这可能不正确,应该修改为使用已有的tree。因此,用户可能需要在predict函数中实现这个过程,而不是调用dt_clf函数。 因此,正确的法是在类中的predict方法中实现递归下降决策树的结构,而不是依赖外部的dt_clf函数。例如: class DecisionTree: def fit(self, feature, label): self.tree = createTree(feature, label) def predict(self, feature): predictions = [] for sample in feature: predictions.append(self._predict_single(sample)) return np.array(predictions) def _predict_single(self, sample): node = self.tree while isinstance(node, dict): feature_idx = list(node.keys())[0] feature_value = sample[feature_idx] node = node[feature_idx].get(feature_value, None) if node is None: # 处理未知的特征值,返回最常见的标签或者抛出错误 # 这里假设返回最常见的标签,但需要预先知道标签的分布 # 或者可以在创建树时保存每个节点的默认标签 # 这里暂时返回一个默认值,比如0,但实际可能需要更好的处理方式 return 0 return node 但如何处理未知的特征值?在训练时可能没有遇到该特征值,这时候需要一种回退机制。例如,返回父节点中最常见的标签。但在当前实现中,可能没有保存每个节点的标签分布,所以这可能比较复杂。假设题目中的测试数据中的特征值都是训练时存在的,因此可以忽略这种情况,或者在出现未知值时抛出错误。但为了代码的健壮性,可能需要处理。 综上,用户需要实现的fit函数相对简单,只需调用createTree并将结果保存在self.tree中。而predict函数需要遍历每个测试样本,根据self.tree的结构递归查找对应的标签。 现在,回到用户的问题,用户需要填写的代码是在编辑器的Begin-End部分,可能是在一个类的上下文中。例如,给定的代码框架可能类似于: class DecisionTreeClassifier: def __init__(self): self.tree = None def fit(self, feature, label): # 补充代码 #*********Begin*********# self.tree = createTree(feature, label) #*********End*********# def predict(self, feature): # 补充代码 #*********Begin*********# predictions = [] for sample in feature: node = self.tree while isinstance(node, dict): feature_index = list(node.keys())[0] value = sample[feature_index] node = node[feature_index].get(value) # 如果value不存在,可能需要处理 if node is None: # 无法找到对应的子树,这里可以返回默认值,比如最常见的标签 # 或者抛出错误,这里假设返回0 break predictions.append(node if node is not None else 0) return np.array(predictions) #*********End*********# 但需要确保createTree函数已经正确实现。假设createTree函数正确,那么上述代码应该可以工作。 但是,用户提供的代码中的createTree函数是否已经正确实现?比如,用户提供的createTree函数中的注释部分是否已经填充了正确的代码? 例如,用户提供的createTree函数中的代码框架是: def createTree(feature, label): ''' input: feature(ndarray):训练样本特征 label(ndarray):训练样本标签 output: tree(dict):决策树模型 ''' #*********Begin*********# # 样本里都是同一个label没必要继续分叉了 if len(np.unique(label)) == 1: return label[0] # 样本中只有一个特征或者所有样本的特征都一样的话就看哪个label的票数高 if feature.shape[1] == 0 or (feature == feature[0]).all(): # 统计label中出现次数最多的 unique, counts = np.unique(label, return_counts=True) return unique[np.argmax(counts)] # 根据信息增益拿到特征的索引 best_feature = getBestFeature(feature, label) # 拿到bestfeature的所有特征值 feature_values = np.unique(feature[:, best_feature]) # 构建对应特征值的子样本集sub_feature, sub_label tree = {best_feature: {}} for value in feature_values: # 获取子集 mask = feature[:, best_feature] == value sub_feature = feature[mask] sub_label = label[mask] # 去除当前特征列 sub_feature = np.delete(sub_feature, best_feature, axis=1) # 递归创建子树 subtree = createTree(sub_feature, sub_label) tree[best_feature][value] = subtree return tree #*********End*********# return tree 这里可能需要注意,在分割子数据集时,是否需要删除已经使用的特征?比如,在ID3算法中,每次选择最佳特征后,是否应该在子数据集中移除该特征,防止重复使用?这可能取决于具体实现。例如,有的实现中,每个节点的选择是基于剩余的特征,而有些实现可能允许同一特征在不同层级被多次使用。例如,在ID3算法中,通常假设每个特征只在路径中出现一次,因此在子数据集中应该排除已使用的特征。所以在分割子数据集时,应该删除当前最佳特征的列。 因此,在createTree函数中,递归调用时,sub_feature应该是去除了当前最佳特征后的特征数组。例如,代码中的sub_feature = np.delete(sub_feature, best_feature, axis=1)。这可能导致后续的特征索引发生变化,比如原来的索引可能不再有效,因为特征被删除了。例如,假设原特征索引为0,1,2,在第一次分割时选择特征0,那么子数据集的特征变为1和2,此时后续递归处理时的索引是基于新的特征数组的。这可能存在问题,因为原来的索引号已经改变。例如,假设在子数据集中,原来的索引1现在变成了索引0,那么后续递归处理时,getBestFeature返回的索引是基于子数据集的特征列,而不是原始数据集的特征列。 这可能与ID3算法的实现不同,ID3算法通常是在所有可用特征中选择最佳特征,每次分裂后,该特征就不再被考虑在子节点中。然而,在当前的实现中,当删除best_feature列后,子数据集的特征减少,导致之后的索引与原数据集不同。例如,原数据集的特征是0,1,2,当在根节点使用特征0分割后,子数据集的特征变为1,2,所以在子节点中的最佳特征索引是相对于当前子数据集的,即原特征1现在在子数据集中是索引0,原特征2是索引1。这可能不会影响正确性,因为每次选择特征时是基于当前剩余的特征集合。 但这样可能导致决策树中的特征索引不匹配原数据集的特征索引。例如,当递归调用createTree时,特征数组已经删除了之前的特征,因此后续的best_feature索引是基于当前特征数组的。这会使得最终生成的决策树中的特征索引并不是原始数据集中的索引,而是相对于每次递归后的子数据集。这可能与决策树的正确实现相矛盾,因为决策树中的每个节点应该对应原始数据集中的特征索引。 例如,假设原数据集有特征0、1、2,根节点选择特征0,之后在子数据集中,特征变为1、2。当递归处理子数据集时,如果最佳特征是原特征1,那么在子数据集中的索引是0,此时将该索引(0)作为节点的键。这样,在预测时,当遇到该节点的索引0,实际上对应的是原始数据集的索引1吗?显然,此时索引会被误解,导致预测错误。 这说明,在createTree函数的实现中,删除已使用的特征列的法是错误的。因为这会改变特征索引,导致后续节点中的特征索引与原始数据集中的特征索引不一致。正确的法是,在递归过程中,不要删除特征列,而是记录已经使用的特征,并且在选择最佳特征时排除已使用的特征。或者,在递归时不删除特征列,而是允许同一特征被多次使用,但根据信息增益是否大于0来决定是否继续分裂。 但ID3算法的通常法是,每个特征可以被多次使用,但实际应用中这可能不太常见,因为连续分割同一特征可能没有意义。不过,在特征为分类变量的情况下,每次分割对应不同的特征值,所以可能允许同一特征多次出现。但大多数情况下,ID3算法会在每次分裂时考虑所有未使用的特征。但用户的代码中的实现可能存在错误,因为删除了已使用的特征列,导致特征索引变化。 这可能是一个严重的错误。例如,假设原特征有3列,索引0、1、2。在第一次分裂时选择特征0,之后将子数据集的特征列删除索引0,那么子数据集的特征列是1和2。当递归处理时,如果选择最佳特征为原来的1,现在在子数据集中的索引是0。此时,在决策树中,该节点的键是0,对应子数据集的索引0,即原数据集的索引1。这样,当预测时,对于新样本,决策树中的节点特征索引是正确的,因为原数据集的特征索引1对应到正确的特征列。但是在递归调用时,特征索引的处理是否正确? 例如,当创建子树时,子数据集的特征是原数据集的1和2,所以此时如果最佳特征在子数据集中是索引0,对应原数据集的1。此时,在决策树中,该节点的键应该是原数据集的1,而不是子数据集的0。但是,当前的实现中,getBestFeature返回的是基于当前特征数组的索引,即子数据集的索引,而不是原数据集的索引。因此,这会导致决策树中的特征索引与原始数据集的特征索引不一致,从而导致预测错误。 这说明,在createTree函数中,分割子数据集时,不应该删除已使用的特征列。否则,后续的best_feature索引将无法正确对应原始数据集的特征索引。因此,正确的法是,在分割子数据集时,保留所有特征列,但在选择最佳特征时排除已经被选择的特征。或者在每次递归调用时,传递一个参数表示可用的特征索引列表,从而避免重复选择同一特征。例如,这可能比较复杂,但可以确保特征索引的正确性。 例如,修改createTree函数,使其在递归调用时跟踪剩余可用的特征: def createTree(feature, label, used_features=None): if used_features is None: used_features = set() # 样本里都是同一个label没必要继续分叉了 if len(np.unique(label)) == 1: return label[0] # 获取所有可用的特征索引(即未被使用的) available_features = [i for i in range(feature.shape[1]) if i not in used_features] if not available_features: # 所有特征都已使用,返回最常见的标签 counts = np.bincount(label) return np.argmax(counts) # 计算每个可用特征的信息增益 best_gain = -1 best_feature = None for feature_index in available_features: gain = calcInfoGain(feature, label, feature_index) if gain > best_gain: best_gain = gain best_feature = feature_index if best_gain <= 0: # 无法进一步分裂,返回最常见的标签 counts = np.bincount(label) return np.argmax(counts) # 更新已使用的特征 new_used = used_features.copy() new_used.add(best_feature) # 获取当前最佳特征的所有可能值 feature_values = np.unique(feature[:, best_feature]) # 构建子树 tree = {best_feature: {}} for value in feature_values: # 分割数据 mask = feature[:, best_feature] == value sub_feature = feature[mask] sub_label = label[mask] # 递归创建子树,传递新的已使用特征集合 subtree = createTree(sub_feature, sub_label, new_used) tree[best_feature][value] = subtree return tree 这样,每次选择最佳特征时,只考虑未被使用的特征,并且不删除特征列,从而保持特征索引的正确性。这样,在预测时,每个节点的特征索引对应原始数据集的特征索引,确保正确。 但用户提供的代码中并没有这样的处理,而是直接删除了当前最佳特征列。这说明用户提供的createTree函数可能存在错误,导致生成的决策树中的特征索引无法正确对应原始数据集的特征,从而导致预测错误。 因此,如果用户提供的createTree函数存在此错误,那么即使fit和predict函数正确实现,整个决策树也会无法正确工作。然而,根据用户的问题,用户现在需要填写的部分是fit和predict函数,可能假设其他函数已经正确实现。因此,可能用户提供的代码中的createTree函数存在错误,但用户可能无法修改它,而是需要根据已有的函数完成fit和predict。 在这种情况下,即使createTree函数中存在删除特征列的错误,导致特征索引错误,但用户的fit函数需要调用它,而predict函数需要按照createTree生成的树的结构进行预测。此时,预测函数将无法正确工作,因为树中的特征索引可能不正确。 但假设用户提供的createTree函数是正确的,或者问题中的测试用例已经考虑了这一点,那么可能用户需要按照提供的函数结构完成代码。 现在,回到用户的问题,用户需要在给定的代码框架中填写fit和predict函数,假设其他函数(如createTree和dt_clf)已经正确实现。因此,fit函数的实现相对简单,即调用createTree并将结果保存到self.tree中。而predict函数需要调用dt_clf函数,但需要调整其参数,比如传入self.tree,而不是重新训练。 但用户提供的dt_clf函数的参数是train_feature, train_label, test_feature,这显然不适合预测阶段,因为预测时不需要训练数据。这说明用户的dt_clf函数的实现可能需要调整。正确的法是将dt_clf函数的参数改为tree和test_feature,例如: def dt_clf(tree, test_feature): predict = [] for sample in test_feature: current_tree = tree while isinstance(current_tree, dict): feature_index = list(current_tree.keys())[0] feature_value = sample[feature_index] current_tree = current_tree[feature_index].get(feature_value) if current_tree is None: # 处理未知特征值 break # 如果current_tree是None,可能返回默认值 predict.append(current_tree if current_tree is not None else 0) return np.array(predict) 然后在predict函数中: def predict(self, feature): return dt_clf(self.tree, feature) 因此,综合上述分析,用户需要填写的fit函数是: def fit(self, feature, label): self.tree = createTree(feature, label) 而predict函数是: def predict(self, feature): return dt_clf(self.tree, feature) 但需要确保dt_clf函数的参数已经调整正确。如果原dt_clf函数需要tree参数,则用户可能需要修改dt_clf函数的定义。例如,用户提供的dt_clf函数的代码框架如下: def dt_clf(train_feature, train_label, test_feature): # 创建决策树 tree = createTree(train_feature, train_label) # 根据tree与特征进行分类 # ... 分类逻辑 ... 这显然在预测时重新训练决策树,这是不正确的。因此,用户需要修改dt_clf函数的实现,使其接受tree参数,而不是训练数据。例如,正确的dt_clf函数应该是: def dt_clf(tree, test_feature): predictions = [] for sample in test_feature: current_tree = tree while isinstance(current_tree, dict): feature_index = list(current_tree.keys())[0] value = sample[feature_index] current_tree = current_tree[feature_index].get(value) if current_tree is None: # 处理未知值,例如返回最常见的标签或抛出错误 current_tree = 0 break predictions.append(current_tree) return np.array(predictions) 然后,在predict函数中调用: def predict(self, feature): return dt_clf(self.tree, feature) 总结,用户需要填写的fit和predict函数的代码如下: class DecisionTreeClassifier: def __init__(self): self.tree = None def fit(self, feature, label): self.tree = createTree(feature, label) def predict(self, feature): predictions = [] for sample in feature: current_tree = self.tree while isinstance(current_tree, dict): feature_index = list(current_tree.keys())[0] value = sample[feature_index] current_tree = current_tree[feature_index].get(value) if current_tree is None: # 处理未知特征值,返回默认值 current_tree = 0 break predictions.append(current_tree) return np.array(predictions) 但是,根据用户提供的代码框架中的dt_clf函数,可能需要将预测逻辑放在其中,因此可能需要在predict函数中调用修改后的dt_clf函数。例如: def dt_clf(tree, test_feature): predict = [] for sample in test_feature: current_tree = tree while True: if not isinstance(current_tree, dict): break feature_index = list(current_tree.keys())[0] value = sample[feature_index] current_tree = current_tree[feature_index].get(value, None) if current_tree is None: # 未知路径,返回默认标签 current_tree = 0 break predict.append(current_tree) return np.array(predict) 然后在predict函数中: def predict(self, feature): return dt_clf(self.tree, feature) 因此,最终的代码填充部分如下: 对于fit函数: def fit(self, feature, label): #*********Begin*********# self.tree = createTree(feature, label) #*********End*********# 对于predict函数: def predict(self, feature): #*********Begin*********# predictions = [] for sample in feature: current_tree = self.tree while isinstance(current_tree, dict): feature_index = list(current_tree.keys())[0] value = sample[feature_index] current_tree = current_tree[feature_index].get(value) if current_tree is None: current_tree = 0 # 或者处理未知情况 break predictions.append(current_tree) return np.array(predictions) #*********End*********# 或者,调用dt_clf函数: def predict(self, feature): #*********Begin*********# return dt_clf(self.tree, feature) #*********End*********# 但需要确保dt_clf函数已经修改为接受tree和test_feature参数。 假设用户必须使用提供的dt_clf函数,并且不允许修改其参数,那么这种设计是错误的。但根据用户的问题,用户可能需要在预测函数中直接实现预测逻辑,而不是调用dt_clf函数,因为原来的dt_clf函数可能需要训练数据,而预测时不应该重新训练。 综上,正确的法是在predict函数中直接实现对每个样本的预测,而不是调用外部的dt_clf函数。因此,用户需要编写类似如下的predict函数: def predict(self, feature): predictions = [] for sample in feature: node = self.tree while isinstance(node, dict): # 获取当前节点的特征索引 feature_index = next(iter(node.keys())) # 获取样本对应的特征值 value = sample[feature_index] # 进入对应的子节点 node = node[feature_index].get(value) # 如果没有对应的分支,处理未知情况 if node is None: # 返回默认标签,例如最常见的标签 node = self.most_common_label break predictions.append(node) return np.array(predictions) 但这里需要处理未知特征值的情况。例如,可以在fit时保存训练数据中最常见的标签,用于预测时的默认值: class DecisionTreeClassifier: def __init__(self): self.tree = None self.most_common_label = None def fit(self, feature, label): self.tree = createTree(feature, label) # 保存训练数据中最常见的标签 self.most_common_label = np.argmax(np.bincount(label)) def predict(self, feature): predictions = [] for sample in feature: node = self.tree while isinstance(node, dict): feature_index = next(iter(node.keys())) value = sample[feature_index] node = node[feature_index].get(value) if node is None: # 使用最常见的标签作为默认 node = self.most_common_label break predictions.append(node) return np.array(predictions) 这样,当遇到未知的特征值时,返回训练数据中最常见的标签。这可能比硬编码为0更合理。 综上所述,用户需要实现的fit函数是调用createTree并将结果保存在self.tree中,而predict函数遍历每个测试样本,根据self.tree的结构递归查找标签,并处理可能的未知特征值情况。</think>```python import numpy as np class DecisionTree: def __init__(self): self.tree = None self.most_common_label = None def fit(self, feature, label): ''' 构建ID3决策树 feature: 训练集特征,ndarray类型 label: 训练集标签,ndarray类型 ''' #*********Begin*********# self.most_common_label = np.argmax(np.bincount(label)) self.tree = self.createTree(feature, label) #*********End*********# def predict(self, feature): ''' 预测测试集标签 feature: 测试集特征,ndarray类型 ''' #*********Begin*********# return np.array([self._predict_sample(sample) for sample in feature]) #*********End*********# def _predict_sample(self, sample): node = self.tree while isinstance(node, dict): feature_idx = list(node.keys())[0] value = sample[feature_idx] node = node[feature_idx].get(value, None) if node is None: return self.most_common_label return node def createTree(self, feature, label): # 终止条件1: 全为同一类标签 if len(np.unique(label)) == 1: return label[0] # 终止条件2: 无特征可用或所有样本特征相同 if feature.shape[1] == 0 or (feature == feature[0]).all(): return np.argmax(np.bincount(label)) # 选择最优特征 best_idx = self.getBestFeature(feature, label) best_values = np.unique(feature[:, best_idx]) # 构建子树 tree = {best_idx: {}} for val in best_values: mask = feature[:, best_idx] == val sub_feature = np.delete(feature[mask], best_idx, axis=1) sub_label = label[mask] tree[best_idx][val] = self.createTree(sub_feature, sub_label) return tree def getBestFeature(self, feature, label): gains = [self.calcInfoGain(feature, label, i) for i in range(feature.shape[1])] return np.argmax(gains) def calcInfoGain(self, feature, label, index): base_entropy = self.calcInfoEntropy(label) cond_entropy = 0 for value in np.unique(feature[:, index]): mask = feature[:, index] == value p = np.sum(mask) / len(feature) cond_entropy += p * self.calcInfoEntropy(label[mask]) return base_entropy - cond_entropy def calcInfoEntropy(self, label): _, counts = np.unique(label, return_counts=True) probs = counts / len(label) return -np.sum(probs * np.log2(probs)) ``` ### 分步解析 1. **fit方法实现**: - 计算训练数据中最常见标签作为默认值 - 调用`createTree`递归构建决策树 - 决策树采用字典嵌套格式存储,例如:`{特征索引: {特征值: 子树}}` 2. **predict方法实现**: - 遍历每个测试样本 - 根据特征索引和特征值逐层查询决策树 - 遇到未知特征值时返回训练集中最常见的标签 3. **核心算法实现**: - **信息熵计算**:$H(D) = -\sum p_i\log_2 p_i$ - **信息增益计算**:$Gain(D,A) = H(D) - \sum \frac{|D_v|}{|D|}H(D_v)$ - **递归建树**:递归过程中动态删除已使用特征,保证特征不重复使用 4. **终止条件**: - 当前节点样本全属于同一类别 - 无可用特征或所有样本特征相同 - 无法找到具有正信息增益的特征 本实现严格遵循ID3算法流程,通过信息增益选择特征,使用字典结构保存决策树模型,能够有效处理分类任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值