生成对抗网络

文章探讨了生成模型在人工智能中的作用,尤其是自动编码器在数据压缩、去噪和生成方面的应用。随着技术进步,如变分编码器和生成对抗网络(GANs)的引入,无监督学习得到显著发展。深度学习的进步,如CNN和RNN的演变,促进了监督学习,而生成模型则有望推动无监督学习的更大突破。
摘要由CSDN通过智能技术生成

长久以来,人们能希望机器能够充满创造力,不仅能完成重复的机械劳动,还能完成一些创造性的工作,比如画画、写诗、创作歌词等。这些一直是人工智能长久以来的梦想,随着自动编码器和变分编码器的提出,这一梦想慢慢变成了现实,到了2014年,Ian Goodfellow提出了生成对抗网络这一概念,推进了整个无监督学习的发展进程。

1.生成模型

生成模型(generative model)这一概念属于概率统计和机器学习,是指一些列用于随机生成可观测数据的模型。简而言之,就是“生成”的样本和真实的样本尽可能的相似。生成模型的两个主要功能就是学习一个概率分布Pmodel(X)和生成数据,这是非常重要的,不仅能用在无监督学习中,还可以用在监督学习中。

如今随着计算能力加强,数据集的增多,深度学习逐渐流行了起来,随着越来越多人的研究,各种各样的神经网络都在不断进步,CNN里面出现了inception net、resnet等,RNN演变成LSTM和GRU等不同长短时间记忆的网络,虽然神经网络在不断发展,但本质上是在CNN和RNN的基础上做着监督学习的任务,无监督学习的发展一直比较缓慢,生成模型希望能够让无监督学习取得比较大的进步。

1.1自动编码器

自动编码器(AutoEncoder)最开始作为一种数据的压缩方法,其特点有:

(1)跟数据相关程度很高,这意味着自动编码器只能压缩与训练数据相似的数据,因为使用神经网络提取的特征一般是高度想关于原始的训练集,使用人脸训练出来的自动编码器在压缩自然界动物的图片时表现会比较差,因为它只学习到了人脸的特征,而没有学习到自然界图片的特征。

(2)压缩后的数据是有损的,这是因为在降维的过程中不可避免地丢失信息。

到了2012年,人们发现在卷积神经网络中使用自动编码器逐层预训练可以训练更深层的网络,但是人们很快发现,良好的初始化策略要比复杂的逐层预训练有效的多,2014年出现的Batch Normalization技术也使得更深的网络能够被有效训练,到了2015年年底,通过残差(resnet)基本可以训练任意深度的神经网络。

所以现在自动编码器主要应用在两个方面:第一个是数据去噪,第二是进行可视化降维。自动编码器还有一个功能,即生成数据。

在自动编码器的结构中,第一个部分是编码器(Encoder),第二个部分是解码器(decoder),编码器和解码器都可以是任意模型,通常使用神经网络模型作为编码器和解码器。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

mez_Blog

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值