生成对抗网络(Generative Adversarial Networks,简称GAN)是一种由深度学习驱动的机器学习模型,最早由Ian Goodfellow等人在2014年提出。GAN的独特之处在于其由两个互相对抗的神经网络组成:生成器和判别器。生成器试图生成逼真的样本,而判别器则试图区分真实样本和生成样本。通过不断的对抗训练,GAN能够逐渐提高生成样本的质量,使其越来越接近真实样本。
GAN的发展历程可以追溯到2014年,当时Goodfellow等人在论文中首次提出了这一概念。他们的研究表明,通过让生成器和判别器相互对抗,可以有效地提高生成样本的质量。这一思想引起了广泛的关注,并在接下来的几年中得到了快速发展。
在早期的研究中,GAN主要应用于图像生成领域。研究人员通过训练生成器来生成逼真的图像,这对于计算机图形学和计算机视觉领域具有重要意义。随着时间的推移,GAN的应用范围逐渐扩大,涉及到自然语言处理、音频合成等领域。
而随着GAN的发展,研究人员提出了许多改进和变种模型。其中最著名的是条件生成对抗网络(Conditional GAN),它允许生成器根据给定的条件生成样本。这种模型在图像生成、图像修复等任务中取得了显著的