1、pandas是python的一个库,主要功能是处理数据,是各种机器学习比赛最常用的库(没有之一)。
2、使用方法:import pandas as pd
,前提得安装了这个库
3、pandas有三大数据结构
- dataframe
- panel #高版本已弃用
- series
4、Series介绍
- 创建series,
s = pd.Series([2, 3, 4])
- 可以通过Series对象的values属性获取数据部分,数据部分是ndarray
s.values
- 可以通过Series对象的index属性获取索引部分,
list(s.index)
- 可以通过index参数为对象指定字符串类型索引
index = ['mo', 'mo', 'da']
s = pd.Series([1,2,3], index=index)
s[s>2]
可以把s中大于2的值选出来np.sqrt(s)
,求s中的每个值的算术平方根- 通过字典创建Series对象
dic = {"时崎狂三": 16, "鲁鲁修": 18, "埼玉": 24}
s = pd.Series(dic) # dic的key是s的index
s[0]
返回的是一个值s[0:1
]返回的是一个series,采用整数索引对series进行切片时,区间不包括右侧最大索引,也就是左闭右开- 选取多个值,s[[‘时崎狂三’, ‘埼玉’]]
- 判断数据是否缺失:
pd.isnull(s)
- 统计缺失值的个数:
pd.isnull(s).sum()
5、dataframe介绍
- 创建dataframe对象
dic = {'动漫番名':['约会大作战', '叛逆的鲁鲁修', '一拳超人'],
'喜欢人物':['时崎狂三', '鲁鲁修', '埼玉'],
'看番时间': [2021, 2016, 2018]}
df = pd.DataFrame(dic)
- 可以通过columns参数指定列的显示顺序
df = pd.DataFrame(dic, columns=['动漫番名', '看番时间', '喜欢人物'])
df.shape
(3,3)df.index
行索引df.columns
列索引df.values
返回一个3*3的array
array([['约会大作战', 2021, '时崎狂三'],
['叛逆的鲁鲁修', 2016, '鲁鲁修'],
['一拳超人', 2018, '埼玉']], dtype=object)
-
查看数据的基本信息,
df.info()
-
索引不能单个修改,可以将列的属性变为索引
df = df.set_index(['看番时间'])
-
获取列,
df['动漫番名']
,获取多列,df[['喜欢人物', '动漫番名']]
-
读取csv文件,
df = pd.read_csv(file_path)
-
索引方式:
- 直接索引,必须先列后行
- 按名字索引,
loc
- 按数字索引,
iloc
- 组合索引,数字、名字混合使用
ix
-
对某一列按照从大到小的顺序排列(需要是数值类型的列),
df.sort_values(by=[列名], ascending=False) 默认是升序的
-
新增一列,
df[列名] = 对应值
-
数据分组,
g = df.groupby(列名)
,g是一个dataframe组对象,分组的目的是为了聚合(sum mean等)来看出数据的分布特征 -
统计某列的数据,
df[列名].value_counts()
-
合并数据,
pd.merge(left, right, on=[列名])
-
合并数据后一般需要重新索引,
df.reset_index(drop=True)
,将旧索引丢掉 -
apply方法:df.apply(函数名), 例如:
def add(x):
return x+1
df.apply(add) # 就是将df的每一个值加了1
- 透视表,
pd.pivot_table(df, index=列名,columns=列名,values=列名,aggfunc=np.sum)
,通过pandas的透视表可以改变表的结构,变成更方便我们观察的数据格式,其中的aggfunc参数是聚合使用的函数 - 交叉表crosstab()是一种特殊的pivot_table(),多用于计算分组频率,
pd.crosstab()
实践是检验真理的唯一标准,这些关于pandas的库的操作必须通过自己手敲练习才能掌握,切记不要眼高手低。
活动地址:CSDN21天学习挑战赛