根据最大似然估计可以得到方差的估计值为:
σ M L 2 = 1 N ∑ n = 1 N ( x n − μ M L ) 2 (1) \sigma_{ML}^{2}=\frac{1}{N}\sum_{n=1}^{N}(x_{n}-\mu_{ML})^{2}\tag {1} σML2=N1n=1∑N(xn−μML)2(1)
其中 μ M L = 1 N ∑ i = 1 N x i \mu_{ML}=\frac{1}{N}\sum_{i=1}^{N}x_{i} μML=N1∑i=1Nxi
对 σ M L 2 \sigma_{ML}^{2} σML2求期望的结果为:
E ( σ M L 2 ) = N − 1 N σ 2 (2) E(\sigma_{ML}^{2})=\frac{N-1}{N}\sigma^{2}\tag {2} E(σML2)=NN−1σ2(2)
从这个结果来看,可以知道最大似然估计对实际的方差 σ 2 \sigma^{2} σ2低估了,主要是因为系数 N − 1 N \frac{N-1}{N} NN−1
下面对这个期望结果进行证明:
将 ( 1 ) (1) (1)式代入 ( 2 ) (2) (2)可得,
E
(
σ
M
L
2
)
=
E
(
1
N
∑
n
=
1
N
(
x
n
−
μ
M
L
)
2
)
=
1
N
∑
n
=
1
N
E
(
(
x
n
−
μ
M
L
)
2
)
=
1
N
∑
n
=
1
N
E
(
x
n
2
−
2
x
n
μ
M
L
+
μ
M
L
2
)
=
1
N
∑
n
=
1
N
E
(
x
n
2
)
−
2
N
∑
n
=
1
N
E
(
(
1
N
x
n
2
+
1
N
∑
i
=
1
,
i
≠
n
N
x
n
x
i
)
)
+
1
N
∑
n
=
1
N
E
(
μ
M
L
2
)
⏟
∗
=
σ
2
+
μ
2
−
2
N
μ
2
−
2
N
σ
2
−
2
N
−
1
N
μ
2
+
μ
2
+
1
N
σ
2
=
N
−
1
N
σ
2
\begin{aligned} E(\sigma_{ML}^{2}) &= E(\frac{1}{N}\sum_{n=1}^{N}(x_{n}-\mu_{ML})^{2}) \\ & = \frac{1}{N}\sum_{n=1}^{N}E((x_{n}-\mu_{ML})^{2}) \\ & = \frac{1}{N}\sum_{n=1}^{N}E(x_{n}^{2}-2x_{n}\mu_{ML}+\mu_{ML}^{2})\\ & = \frac{1}{N}\sum_{n=1}^{N}E(x_{n}^{2})-\frac{2}{N}\sum_{n=1}^{N}E((\frac{1}{N}x_{n}^{2}+\frac{1}{N}\sum_{i=1,i\neq{n}}^{N}x_{n}x_{i}))+\frac{1}{N}\sum_{n=1}^{N}\underbrace{E(\mu_{ML}^{2})}_{*}\\ & = \sigma^{2}+\mu^{2}-\frac{2}{N}\mu^{2}-\frac{2}{N}\sigma^{2}-2\frac{N-1}{N}\mu^{2}+\mu^{2}+\frac{1}{N}\sigma^{2}\\ & = \frac{N-1}{N}\sigma^{2} \end{aligned}
E(σML2)=E(N1n=1∑N(xn−μML)2)=N1n=1∑NE((xn−μML)2)=N1n=1∑NE(xn2−2xnμML+μML2)=N1n=1∑NE(xn2)−N2n=1∑NE((N1xn2+N1i=1,i=n∑Nxnxi))+N1n=1∑N∗
E(μML2)=σ2+μ2−N2μ2−N2σ2−2NN−1μ2+μ2+N1σ2=NN−1σ2
其中
μ
\mu
μ是数据的真实均值,
σ
2
\sigma^{2}
σ2是数据的真实方差,下方花括号括起来的*式的具体计算过程如下:
E
(
μ
M
L
2
)
=
E
2
(
μ
M
L
)
+
D
(
μ
M
L
)
=
μ
2
+
D
(
1
N
∑
i
=
1
N
x
i
)
=
μ
2
+
1
N
2
D
(
∑
i
=
1
N
x
i
)
=
μ
2
+
1
N
2
N
σ
2
=
μ
2
+
1
N
σ
2
\begin{aligned} E(\mu_{ML}^{2}) & = E^{2}(\mu_{ML})+D(\mu_{ML})\\ & = \mu^{2}+D(\frac{1}{N}\sum_{i=1}^{N}x_{i})\\ & = \mu^{2}+\frac{1}{N^{2}}D(\sum_{i=1}^{N}x_{i})\\ & = \mu^{2}+\frac{1}{N^{2}}N\sigma^{2}\\ & = \mu^{2}+\frac{1}{N}\sigma^{2} \end{aligned}
E(μML2)=E2(μML)+D(μML)=μ2+D(N1i=1∑Nxi)=μ2+N21D(i=1∑Nxi)=μ2+N21Nσ2=μ2+N1σ2
证毕。