视频图像质量诊断

本文详细介绍了视频图像质量诊断的多种原理和算法,包括亮度异常、色度异常、条纹噪声、遮挡、信号丢失、模糊、画面抖动、雪花噪声、PTZ云台运动和画面冻结等检测方法,涉及图像灰度化、直方图、特征点匹配、连通区域检测等技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

视频图像质量诊断有哪些原理,视频图像质量诊断有哪些算法?

视频图像质量诊断技术支持对视频黑屏、视频干扰、视频卡顿、视频遮挡、亮度异常、图像偏色、视频模糊、视频冻结、视频抖动、场景变更、无字符叠加等20种视频图像质量异常进行诊断,保障监控系统持续正常工作。

1、视频质量诊断----亮度异常检测

亮度异常检测般包括偏暗检测和偏亮检测,也有称过暗过亮检测.这算法简单,只需要帧图像的亮度值作为判断就行.

原理

把彩色图像转化为灰度图像

求图像的平均灰度值G(整幅或ROI区域),该值就是图像的亮度值

定义阈值A,B.当G∈[0,A]认为图像偏暗,当G∈[B,255]认为图像偏亮

2、视频质量诊断----色度异常检测

色度异常检测般称为偏色检测.即图像为某范围颜色值分布过多而导致图像整体偏色的情况.

原理

提取图像的色度分量H

计算色度分量H的直方图

求最方图最大bin占整个直方图的比例,该比例值就为偏色值

3、视频质量诊断----条纹噪声检测

条纹噪声是带条状的噪声.

原理

提取彩色图像的色度分量.

对色度分量求DFT频谱图.

计算频谱图的异常亮点数,若大于A则认为发生条纹检测.

4、视频质量诊断----遮挡检测

遮挡检测般是摄像头被异物遮挡,呈现出整个场景或某部分场景看不到的情况.被遮挡住的部分般都呈偏黑色.

原理

把彩色图像值化,偏黑的部分为前景,其他部分为背景.

对前景进行连通区域检测,求得最大连通区域面积.

该面积整幅图像面积的比较即为遮挡率.

5、视频质量诊断----信号丢失检测

信号丢失检测也称无信号检测,般当DVR/NVR某些通道没接上摄像头时,会显示黑屏无信号.而IPC无信号里无法返回任何图像信息,也就无法通过图像算法检测到.

原理

把彩色图像值化,偏黑的部分为前景,其他部分为背景.

对前景进行连通区域检测,求得最大连通区域面积.

该面积整幅图像面积的比较即为信号丢失率.

6、视频质量诊断----模糊检测

模糊般是摄像头焦距没调好造成的画面模糊.

原理

把图像分割成N*M的区域.

求每个区域的对比度:(max-min)/max.

求总的平均对比度即为模糊率.

7、视频质量诊断----画面抖动检测

当摄像头立杆不稳或因车辆引起地面振动时,视频画面就会发生抖动.

原理

每隔N帧取帧.

对取到的每帧进行特征点提取.

对检测的相邻2帧进行特征点匹配.

得到匹配矩阵,当匹配矩阵大于A时认为这2帧画面有抖动.

当抖动帧数大于B时认为画面发生抖动.

8、视频质量诊断----雪花噪声检测

雪花噪声即椒盐噪声,以前黑白电视常见的噪声现象.

原理

准备0°,45°,90°,135°4个方向的卷积模板.

用图像先和四个模板做卷积,用四个卷积绝对值最小值Min来检测噪声点.

求灰度图gray与其中值滤波图median.

判断噪声点:fabs(median-gray)>10&&min>0.1.

噪声点占整幅图像的比较即为雪花噪声率.

9、视频质量诊断----信号丢失检测

信号丢失检测也称无信号检测,般当DVR/NVR某些通道没接上摄像头时,会显示黑屏无信号.而IPC无信号里无法返回任何图像信息,也就无法通过图像算法检测到.

原理

把彩色图像值化,偏黑的部分为前景,其他部分为背景.

对前景进行连通区域检测,求得最大连通区域面积.

该面积整幅图像面积的比较即为信号丢失率.

10、视频质量诊断----PTZ云台运动检测

PTZ云台运动检测是通过配合云台运动的功能检测云台运动是否正常.

原理

取云台运动前N帧图像,进行背景建模,得到运动前背景A.

设备发送云台运动指令,让云台进行运动,改变场景.

取云台运动后N帧图像,进行背景建模,得到运动后背景B.

对比A,B颜色直方图的相似度,大于K时认为PTZ云台运动有故障.

11、视频质量诊断----画面冻结检测

画面冻结是由于画面场景没有变化,而仅仅是画面中的时间有变化的情况.此现象需要多帧图像才能检测出来.

原理

每隔T帧从视频中取帧(防止相邻帧太相似引起误检).

对所取的每帧求直方图.

求相邻2帧直方图的相似度.

当相似度大于A时认为帧致,当致的帧达到B时认为画面发生冻结.

二、视频图像质量诊断有哪些算法

1、亮度过亮异常检测:

功能说明:

由于前端摄像机照明异常、增益控制失效、摄像机故障或人为遮挡等引起的画面整体发白(有刺眼感),目标物体轮廓不清晰,整体画面过亮的现象.

算法解决原理:

把图像先进行灰度处理,之后计算图像的平均亮度即可,亮度大于一定阈值,则报警.

2、亮度过暗异常检测:

功能说明:

由于前端摄像机照明异常、增益控制失效、摄像机故障或人为遮挡等引起的画面整体偏黑,目标物体轮廓不清晰,整体画面过暗的现象.

算法解决原理:

把图像先进行灰度处理,之后计算图像的平均亮度即可,亮度小于一定阈值,则报警.

3、对比度异常检测:

功能说明:

由于前端摄像机线路故障、参数错误或其他摄像机故障等原因,所引起视频画面整体亮度跨度范围小、颜色饱和度低而造成的对比度异常的现象.

算法解决原理:

先计算图片在灰度图上的均值和方差,当存在亮度异常时,均值会偏离均值点(可以假设为128),方差也会偏小,通过计算灰度图的均值和方差,就可评估图像是否存在对比度异常情况.

4、偏色异常检测:

功能说明:

由于前端摄像机线路接触不良、外部干扰或摄像机故障等原因,所引起视频中的画面偏色的现象.

算法解决原理:

把RGB图像转化成YUV图像,计算U分量和V分量的比值,从而得出色差的偏移量.

5、清晰度异常检测:

功能说明:

由于前端摄像机视频中聚焦不当,异物遮挡等原因,所引起的画面视野图像模糊的现象.

算法解决原理:

把彩色图像转化为灰度图像,对灰度图像的做边缘检测,本文采用sobel算子做处理,计算边缘的平均值,小于一定阈值则认为是清晰度异常.

6、噪声异常检测:

功能说明:

由于前端摄像机线路老化,传输故障,接触不良,或者受到电磁干扰,所引起的视频图像中产生速切换变化的噪点,或细微密集网纹状噪声的现象.

算法解决原理:

把图像划分成16*16块,分别计算每个子块的方差,计算最大方差和最小方差的信噪比,PSNR.

7、条纹异常检测:

功能说明:

由于前端摄像机线路老化,传输故障,或者接触不良,或受到电磁干扰,所引起的视频图像画面中混有周期性的彩色、黑白型宽型带状、波纹、网状干扰的现象.

算法解决原理:

把彩色图像转化为灰度图像,对灰度图像进行边缘检测,并统计大于设定阈值的点数量,分析这些点占整幅图像的面积比值.

8、冻结异常检测

功能说明:

由于前端摄像机视频传输调度系统故障所引起的视频流解码后的画面中,时间标识无变化而形成的画面冻结的现象.

算法解决原理:

每隔T帧从视频中取一帧(防止相邻帧太相似引起误检),与当前帧做帧差图像DiffImage,统计DiffImage大于th阈值的点数量sum,可以设定多个,算法中设置了2个,统计连续N帧点sum都小于一定阈值,则认为是画面冻结.

9、信号丢失异常检测:

功能说明:

由于前端摄像机损坏、电源故障或视频传输环节故障,引起的间发性或持续性的画面带有明显无信号表示的信号缺失现象.

算法解决原理:

把图像划分成16*16的小块进行统计,计算局部小块的均值和方差,对方差进行排序,分别统计20和50(作为参考)对应的方差进行分析,小于一定阈值则认为信号丢失.

10、抖动异常检测:

功能说明:

由于前端摄像机自身震动或受环境影响引起的画面抖动,所引起的视频现象画面整体呈现周期性平移式振颤或局部范围内不规则视频信号畸变的现象.

算法解决原理:

每隔N帧取一帧,对取到的每帧进行特征点提取,对检测的相邻2帧进行特征点匹配,得到匹配矩阵,当匹配矩阵大于A时认为这2帧画面有抖动,当抖动帧数大于B时认为画面发生抖动.

11、遮挡异常检测:

功能说明:

由于前端摄像机受外部因素形成异物遮挡,所引起的视频画面主体区域造成的部分或全部视野受阻,画面监控信息严重缺失的现象.

算法解决原理:

彩色图像二值化,偏黑的部分为前景,其他部分为背景,对前景进行连通区域检测,求得最大连通区域面积,该面积整幅图像面积的比较即为遮挡率.

12、黑白图像异常检测:

功能说明:

由于前端摄像机线路接触不良、外部干扰或摄像机故障等原因,所引起视频画面呈现灰度成像,未能还原物体真实色彩的现象.

算法解决原理:

把彩色图像转化为HSV空间,计算H和S的变化量即可.

13、场景变更异常检测:

功能说明:

由于前端摄像机视野、角度被人为移动,所引起的视频画面主体区域与其初始场景相比,发生边界偏移或异物遮罩而造成的场景变换现象.

算法解决原理:

对彩色图像做高斯建模,提取高斯建模的前景图像,计算前景图像的变化量,大于设定值后,则报警.

14、场景剧变常检测:

功能说明:

由于前端摄像机传输故障、外部信号干扰或前端设备故障,所引起的视频画面范围内存在像素块的跳变、叠加,剧烈闪烁等不规则视频信号畸变而造成的场景剧变现象.

算法解决原理:

对彩色图像做高斯建模,提取高斯建模的前景图像,计算前景图像的变化量,大于设定值后,则报警.

智能监控系统中实时视频质量诊断算法的设计是一个复杂的过程,涉及到计算机视觉、数字图像处理和电子技术等多个领域的知识。首先,算法需要定义视频质量的评估指标,常见的包括信噪比(SNR)、结构相似度指数(SSIM)和峰值信噪比(PSNR)等。这些指标能够量化视频的清晰度、对比度和色彩保真度等特性。 参考资源链接:[智能监控中的视频质量诊断算法研究与实现](https://wenku.csdn.net/doc/6avutgz6ua?spm=1055.2569.3001.10343) 接着,算法开发需要采用机器学习或深度学习的方法来训练模型,这些模型能够通过大量视频数据学习识别视频质量的下降。在训练过程中,可以利用卷积神经网络(CNN)来自动提取视频帧中的特征,并构建分类器来识别不同的视频质量问题,例如模糊、噪声、失真等。 在实时诊断方面,算法必须确保能够高效运行,以适应监控系统对速度的要求。为此,可以采用轻量级的神经网络架构或优化现有模型的推理效率,通过减少计算复杂度和采用硬件加速技术来提高处理速度。同时,算法需要能够适应不同类型的视频噪声,比如压缩噪声、传输错误和拍摄条件变化等问题。 在实现上,算法的设计流程应包括数据预处理、特征提取、模型训练和性能验证等步骤。数据预处理阶段,需要对原始视频数据进行格式转换、降噪和增强等操作。特征提取则关注于从视频帧中提取有助于视频质量评估的关键信息。模型训练阶段,应使用标注好的高质量和低质量视频数据集来训练模型。最后,在性能验证阶段,算法需要在各种场景下进行测试,以确保其稳定性和准确性。 此外,实时监控系统中的视频质量诊断算法还应具备良好的可扩展性,以便于未来集成更先进的技术和算法,进一步提升监控系统的智能化和可靠性。 通过上述分析,你可以发现,设计一个实时视频质量诊断算法不仅需要专业的技术知识,还需要深入理解智能监控系统的需求。为了更深入地掌握这一课题,我建议阅读《智能监控中的视频质量诊断算法研究与实现》。这份资料详细介绍了视频质量诊断算法的研究与实现过程,包括算法设计、实现和性能测试等多个方面,将帮助你全面理解视频质量诊断在智能监控系统中的应用,并为你解决类似问题提供专业的指导。 参考资源链接:[智能监控中的视频质量诊断算法研究与实现](https://wenku.csdn.net/doc/6avutgz6ua?spm=1055.2569.3001.10343)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

somgl

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值