CVPR 2025 | 迈向可泛化的场景变化检测

论文信息

题目:Towards Generalizable Scene Change Detection
迈向可泛化的场景变化检测
作者:Jae - woo Kim、Ue - hwan Kim

论文创新点

  1. 提出全新任务公式化方法:提出GeSCD,首次全面解决场景变化检测研究中的泛化问题和时间一致性问题,为该领域研究提供新的方向与思路。
  2. 设计零样本场景变化检测模型:设计GeSCF模型,这是首个零样本场景变化检测模型。它以零样本方式利用分割一切模型(SAM),通过初始伪掩码生成和几何语义掩码匹配模块,解决了SAM用于场景变化检测的技术难题,具有完全的时间一致性。
  3. 构建新的评估基准:构建了GeSCD基准,提出新的评估指标
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值