线性最小二乘法

1.线性最小二乘作为优化问题

A\in\mathbb{R}^{m \times n}b\in\mathbb{R}^{m },假定m\gg n

在这种情况下,极不可能存在向量x \in \mathbb{R}^{n},使得Ax = b。作为替代目标,我们尝试找到尽可能逼近求解Ax = bx

但是,我们必须先定义逼近概念。一种方法是尝试找到向量x,使残差范数 \left \| Ax-b \right \|_{2}的范数最小。

也就是说,我们希望找到一个向量\bar{ x },使得

\begin{align*} \left \| A\bar{x}-b \right \|_{2}\leq \left \| A x-b \right \|_{2}, \forall x \in \mathbb{R}^{n}\end{align*}

同样,我们希望解决优化问题

\begin{align*}\mathcal{L}\mathcal{L}\mathcal{S} \quad \underset{x \in \mathbb{R}^{n}}{\min}\frac{1}{2}\sum_{i=1}^{m}\left(\sum_{j=1}^{n}A_{ij}x_{j}-b_{i} \right)^{2}=\frac{1}{2}\left\Vert Ax-b \right\Vert_{2}^{2} \end{align*}

如果令f(x)=\frac{1}{2}\left \| Ax-b \right \|^{2}_{2},那么求解\mathcal{L}\mathcal{L}\mathcal{S}的点x一阶必要条件是\nabla f(x)=0

为了利用这个性质,我们需要求f梯度的表达式。

对于i=1,2,\dots,m,令

\phi_{i}(x)=\left( \sum_{j=1}^{n}A_{ij}x_{j} -b_{i}\right)^{2}

f(x)=\frac{1}{2}\sum_{i=1}^{m}\phi_{i}(x)

观察,对于i\in \left \{ 1,2,\dots,m \right \}j_{0}\in \left \{ 1,2,\dots,n \right \}

\frac{\partial}{\partial x_{j_{0}}}\phi_{i}(x)=\frac{\partial}{\partial x_{j_{0}}}\left( \sum_{j=1}^{n}A_{ij}x_{j}-b_{i} \right)^{2}=2A_{ij_{0}}\left( \sum_{j=1}^{n}A_{ij}x_{j}-b_{i} \right)

接着,

\frac{\partial}{\partial x_{j_{0}}}f(x)=\sum_{i=1}^{m}A_{ij_{0}}\left( \sum_{j=1}^{n}A_{ij}x_{j}-b_{i} \right)=A_{\cdot j_{0}}^{T}(Ax-b)

则有

\nabla f(x)=\begin{bmatrix} \frac{\partial}{\partial x_{1}}{f(x)} \\ \frac{\partial}{\partial x_{2}}{f(x)} \\ \vdots\\ \frac{\partial}{\partial x_{n}}{f(x)} \end{bmatrix} =\begin{bmatrix} A_{\cdot 1}^{T}(Ax-b) \\ A_{\cdot 2}^{T}(Ax-b) \\ \vdots\\ A_{\cdot n}^{T}(Ax-b) \end{bmatrix} =A^{T}(Ax-b)

因此,如果x \in \mathbb{R}^{n}解决\mathcal{L}\mathcal{L}\mathcal{S},那么有0=\nabla f(x)=A^{T}(Ax-b)或者A^{T}Ax=A^{T}b。该等式称为线性最小二乘问题\mathcal{L}\mathcal{L}\mathcal{S}的正规方程。现在我们必须解决一个问题:正规方程是否存在解。 为此,我们引用以下引理

引理1 对于每个矩阵A\in\mathbb{R}^{m \times n},我们有

Null(A^{T}A)=Null(A) \quad Ran(A^{T}A)=Ran(A)

证明:如果x \in Null(A),则Ax=0,因此A^{T}Ax=0。这样x\in Null(A^{T}A)。于是Null(A) \subset Null(A^{T}A)

反之,x\in Null(A^{T}A),则A^{T}Ax=0\Rightarrow x^{T}A^{T}Ax=0 \Rightarrow (Ax)^{T}(Ax)=0\Rightarrow \left\Vert Ax\right\Vert_{2}^{2} \Rightarrow Ax=0

这样x \in Null(A)。因此Null(A^{T}A) \subset Null(A),得证Null(A^{T}A) = Null(A)

由于Null(A^{T}A) = Null(A),由替代的基本定理可知,

Ran(A^{T}A)=Ran((A^{T}A)^{T})=Null(A^{T}A)^{\perp}=Null(A)^{\perp}=Ran(A^{T})

定理得证。

现在让我们根据这个引理来检验正规方程解的存在性。

正规方程是A^{T}Ax=A^{T}b。通过定义,A^{T}b \in Ran(A^{T})。由引理1可知,Ran(A^{T})=Ran(A^{T}A)。因此一定存在x,使得A^{T}Ax=A^{T}b。也就是说,无论选择矩阵A\in\mathbb{R}^{m \times n}和向量b\in\mathbb{R}^{m },正规方程始终是一致的。

定理2. 正规方程对所有矩阵A\in\mathbb{R}^{m \times n}和向量b\in\mathbb{R}^{m }都是一致的。

定理3.令A\in\mathbb{R}^{m \times n}b\in\mathbb{R}^{m }。然后,对于A^{T}Ax=A^{T}b每个解\bar{x}满足于

  • \begin{align*} \left \| A\bar{x}-b \right \|_{2}\leq \left \| A x-b \right \|_{2}, \forall x \in \mathbb{R}^{n}\end{align*},这个\bar{x}\mathcal{L}\mathcal{L}\mathcal{S}一个全局解。
  • 证明:给u,v \in \mathbb{R}^{m},有\left \| u+v \right \|_{2}^{2}=(u+v)^{T}(u+v)=u^{T}u+2u^{T}v+v^{T}v=\left \| u \right \|_{2}^{2}+2u^{T}v+\left \| v \right \|_{2}^{2}
  • 接着,对于每个x \in \mathbb{R}^{n},有

\begin{align*} \left \| Ax-b \right \|_{2}^{2}&=\left \| (Ax-A\bar{x})+(A\bar{x}-b) \right \|_{2}^{2}\\ &=\left \| A(x-\bar{x}) \right \|_{2}^{2}+2(A(x-\bar{x}))^{T}(A\bar{x}-b) +\left \|A\bar{x}-b \right \|_{2}^{2}\\ &\geq 2(x-\bar{x})^{T}A^{T}(A\bar{x}-b)+\left \|A\bar{x}-b \right \|_{2}^{2} \quad\quad(\left \| A(x-\bar{x}) \right \|_{2}^{2}\geq 0)\\ &=\left \|A\bar{x}-b \right \|_{2}^{2} \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad(A^{T}(A\bar{x}-b)=0) \end{align*}

得证。

定理4. 当且仅当Null(A)={0}最小二乘法问题\mathcal{L}\mathcal{L}\mathcal{S}有唯一解.

2.正交投影到子空间

假定子空间是S\subset \mathbb{R}^{m},且b\notin SSb最小距离问题是找到S的元素尽可能逼近b。需解决的问题

\underset{z \in S}{\min}\frac{1}{2}\left\Vert z-y \right\Vert_{2}^{2}

\bar{z} \in S,使得\begin{align*} \left \| \bar{z}-b \right \|_{2}\leq \left \| z-b \right \|_{2}, \forall z \in S\end{align*}

 

 

 

 

 

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值