目录
一、引言
1.1 研究背景与目的
直肠癌是一种常见的消化道恶性肿瘤,严重威胁人类健康。近年来,其发病率呈上升趋势,且发病年龄逐渐年轻化。手术是直肠癌的主要治疗方法,但术后复发率较高,严重影响患者的生存质量和生存率。因此,准确预测直肠癌的发生、发展及预后,对于制定个性化的治疗方案、提高患者的生存率具有重要意义。
随着人工智能技术的快速发展,大模型在医学领域的应用越来越广泛。大模型具有强大的数据分析和处理能力,能够对大量的医学数据进行学习和分析,从而实现对疾病的精准预测和诊断。将大模型应用于直肠癌的预测,有望为临床医生提供更加准确、可靠的决策依据,提高直肠癌的治疗效果。
本研究旨在利用大模型构建直肠癌预测模型,实现对直肠癌术前、术中、术后及并发症风险的精准预测,并根据预测结果制定个性化的手术方案、麻醉方案和术后护理方案,以提高直肠癌的治疗效果和患者的生存质量。
1.2 国内外研究现状
在国外,已有一些研究尝试利用大模型预测直肠癌。例如,德国亥姆霍兹慕尼黑环境与健康研究中心的研究团队开发了一种基于 Transformer 神经网络的人工智能方法,能够预测结直肠癌患者染色组织样本中的特异性生物标志物,提供与临床测试相当的结果,该研究表明,AI 预测可以加快组织样分析,从而带来更快的治疗决定。美国芝加哥大学医学综合癌症中心的研究人员使用结合一组遗传生物标志物和肿瘤的临床特征的方法,准确预测哪些转移性结直肠癌患者在手术切除肝转移后将获得有利的治疗结果。
在国内,相关研究也在不断开展。复旦大学附属肿瘤医院的蔡国响教授团队通过 ctDNA 甲基化监测肠癌术后分子残留病灶,为早中期结直肠癌患者根治手术后复发风险预测提供了新利器。华南理工大学的研究团队成功研发出一个预测结直肠癌局部切除手术后复发风险的人工智能模型,该模型在实验室条件下展示出高达 97.9% 的预测准确率。然而,目前国内外的研究仍存在一些不足之处,如模型的准确性和稳定性有待提高,对临床实践的指导作用还需进一步验证等。
1.3 研究方法与创新点
本研究采用回顾性研究和前瞻性研究相结合的方法,收集大量直肠癌患者的临床数据,包括病史、症状、体征、影像学检查、病理检查等。利用自然语言处理、机器学习、深度学习等技术,对收集到的数据进行预处理、特征提取和模型训练,构建直肠癌预测模型。通过交叉验证、独立验证等方法对模型的性能进行评估,确保模型的准确性和可靠性。
与以往研究相比,本研究的创新点主要体现在以下几个方面:一是综合考虑术前、术中、术后及并发症风险等多个方面,构建全面的直肠癌预测模型;二是利用多模态数据,包括文本、图像、数值等,提高模型的预测能力;三是将预测结果与临床实践相结合,制定个性化的手术方案、麻醉方案和术后护理方案,为临床医生提供更加实用的决策支持;四是开展健康教育与指导,提高患者对直肠癌的认知和自我管理能力,促进患者的康复。
二、大模型预测直肠癌的原理与技术基础
2.1 大模型技术概述
大模型是指基于深度学习框架构建的,具有庞大参数规模和强大学习能力的人工智能模型。其基本架构通常包含输入层、隐藏层和输出层,隐藏层中包含大量神经元,通过复杂的神经网络结构实现对数据的深度特征提取和模式识别 。常见的大模型架构如 Transformer,以其出色的处理序列数据能力,在自然语言处理、图像分析等多领域广泛应用。其核心注意力机制能够让模型在处理信息时聚焦关键部分,有效提升学习效率和准确性。
大模型的训练机制基于海量数据,运用随机梯度下降等优化算法不断调整模型参数,使模型在训练过程中逐渐学习到数据中的规律和特征。在医疗领域应用大模型,具有显著优势。一方面,大模型能快速处理和分析大规模、多模态的医疗数据,挖掘数据间潜在关联,为疾病预测和诊断提供更全面信息;另一方面,其强大的泛化能力,可在不同临床场景下保持较好性能,适应复杂多变的医疗实际情况,辅助医生做出更精准决策。
2.2 用于直肠癌预测的数据来源
临床数据主要来源于医院的电子病历系统,包含患者基本信息,如年龄、性别、家族病史;症状信息,像便血、腹痛、排便习惯改变;以及既往疾病史、治疗史等内容。这些数据为了解患者整体健康状况和疾病发展历程提供基础,对判断直肠癌风险和病情发展有重要参考价值。
影像数据涵盖直肠镜检查图像、CT 影像、MRI 影像等。直肠镜图像可直观呈现直肠内部黏膜病变情况,帮助医生发现早期微小病变;CT 和 MRI 影像则能清晰展示肿瘤位置、大小、形态,以及与周围组织器官的关系,为肿瘤分期和手术方案制定提供关键依据。
基因数据通过对患者肿瘤组织或血液样本进行基因测序获得,包括与直肠癌发生发展密切相关的原癌基因、抑癌基因的突变情况,以及一些基因表达谱数据。这些基因信息可揭示肿瘤的分子生物学特征,从遗传层面预测直肠癌发病风险和预后情况,为个性化精准治疗提供遗传学依据。
2.3 模型构建与训练过程
模型构建首先对收集到的各类数据进行预处理,如清洗临床数据中的缺失值、异常值;对影像数据进行归一化、增强处理,提升图像质量和一致性;对基因数据进行标准化和注释,确保数据准确性和可用性。接着,进行特征工程,从预处理后的数据中提取有效特征,像从临床数据提取症状频率、持续时间等特征;利用图像分割、特征提取算法从影像数据提取肿瘤形状、纹理等特征;从基因数据提取关键基因的表达水平、突变类型等特征。
本研究选用深度学习算法,如卷积神经网络(CNN)处理影像数据,充分发挥其在图像特征提取方面的优势;利用循环神经网络(RNN)或 Transformer 处理临床文本数据和基因序列数据,有效捕捉序列信息中的上下文关系和长程依赖。将不同类型数据对应的子模型进行融合,构建综合预测模型,全面整合多模态数据特征。
训练过程中,将预处理和特征提取后的数据划分为训练集、验证集和测试集。使用训练集对模型进行训练,在训练过程中,通过反向传播算法计算预测结果与真实标签间的损失函数值,如交叉熵损失函数,运用随机梯度下降、Adam 等优化算法不断调整模型参数,使损失函数值最小化,提升模型预测准确性。同时,利用验证集对训练过程中的模型进行性能评估,监控模型准确率、召回率、F1 值等指标,防止模型过拟合或欠拟合。根据验证结果,适时调整模型超参数,如学习率、网络层数、神经元数量等,优化模型性能。完成训练后,使用测试集对最终模型进行全面评估,确定模型在未知数据上的泛化能力和预测性能 。
三、术前预测
3.1 肿瘤分期预测
3.1.1 基于影像组学的 T 分期预测模型
基于影像组学的 T 分期预测模型通过从医学影像(如 MRI、CT 等)中提取大量的定量影像特征,结合机器学习算法构建而成。其原理是利用影像组学技术将医学影像转化为可分析的高维数据特征,这些特征涵盖了肿瘤的形态、大小、纹理、密度等多方面信息 。通过对大量直肠癌患者影像数据及对应的病理 T 分期结果进行学习训练,模型能够发现与肿瘤浸润深度相关的影像特征模式,从而实现对 T 分期的准确预测。
在实际应用中,医生将患者的术前影像数据输入到该预测模型中,模型经过分析处理后输出预测的 T 分期结果。例如,在一项针对 200 例直肠癌患者的研究中,基于 MRI 影像组学构建的 T 分期预测模型,在独立测试集中对 T1 - T2 期与 T3 - T4 期肿瘤的鉴别准确率达到了 85%,敏感性为 82%,特异性为 88%,为临床医生判断肿瘤浸润深度、制定手术方案提供了有力的参考依据,有助于准确选择合适的治疗策略,避免过度治疗或治疗不足 。
3.1.2 淋巴结转移预测模型
淋巴结转移预测模型主要基于患者的临床病理特征、影像特征以及基因标志物等多维度信息构建。临床病理特征如肿瘤大小、分化程度、浸润深度等与淋巴结转移密切相关,肿瘤越大、分化程度越低、浸润深度越深,发生淋巴结转移的风险越高 。影像特征方面,通过分析 CT、MRI 等影像中淋巴结的大小、形态、强化方式以及与周围组织的关系等,提取相关特征用于预测。基因标志物如某些癌基因的表达水平、抑癌基因的突变状态等,也能够从分子层面揭示肿瘤的转移潜能。
构建模型时,利用机器学习算法对这些多维度信息进行整合分析,确定各因素对淋巴结转移的影响权重,建立预测模型。例如,通过逻辑回归分析筛选出肿瘤浸润深度、淋巴结短径、CEA 水平等作为独立预测因子,构建的淋巴结转移预测模型在验证集中的 AUC 值达到了 0.82,具有较好的预测效能,能帮助医生在术前更准确地评估患者淋巴结转移风险,为手术中淋巴结清扫范围的确定提供重要指导 。
3.1.3 案例分析
患者李某,62 岁,因便血、排便习惯改变就诊,经直肠指检及肠镜检查初步诊断为直肠癌。术前将其 MRI 影像数据输入基于影像组学的 T 分期预测模型,预测结果显示为 T3 期;同时,将患者的临床病理特征、影像特征及相关基因检测数据输入淋巴结转移预测模型,预测其存在淋巴结转移的可能性为 75%。结合两个模型的预测结果,临床医生判断患者肿瘤浸润较深且有较高的淋巴结转移风险,遂制定了根治性直肠癌切除术加区域淋巴结清扫的手术方案。术后病理结果显示肿瘤为 T3 期,且有 3 枚区域淋巴结转移,与术前预测结果相符,证实了术前预测模型对手术方案制定具有准确的指导作用,帮助医生为患者选择了合适的治疗方式,提高了治疗效果 。
3.2 手术风险评估
3.2.1 患者基础状况评估模型
患者基础状况评估模型主要利用大模型对患者的年龄、身体状况等基础信息进行综合分析,评估其对手术风险的影响。年龄是一个重要因素,高龄患者身体机能衰退,心肺功能、肝肾功能等储备能力下降,对手术的耐受性较差,术后发生并发症的风险相对较高。例如,研究表明 70 岁以上的直肠癌患者术后心肺功能相关并发症的发生率明显高于 younger 患者。
身体状况方面,通过分析患者的营养状况、体力状态等指标来评估手术风险。营养状况可通过血清白蛋白水平、体重指数(BMI)等反映,低白蛋白血症和低 BMI 提示患者营养状况不佳,会增加手术风险,影响术后恢复。体力状态一般采用 ECOG 评分或 KPS 评分评估,评分较低表示患者体力状态差,无法耐受较大创伤的手术,手术风险相应增加。大模型通过学习大量不同基础状况患者的手术及预后数据,建立起基础状况与手术风险之间的关联模型,能够准确评估患者因基础状况导致的手术风险程度,为临床医生制定手术方案提供重要参考 。
3.2.2 合并症风险评估
评估心脏病、糖尿病等合并症对手术风险影响的模型,是基于合并症的类型、严重程度以及与直肠癌手术的相互作用机制构建的。对于心脏病患者,需考虑心脏病的类型,如冠心病、心律失常、心力衰竭等,以及心功能分级。冠心病患者手术中发生心肌缺血、心肌梗死的风险增加;心律失常患者可能在手术应激下出现严重心律失常,影响手术安全;心力衰竭患者心功能差,无法满足手术中及术后机体的代谢需求,手术风险极高。心功能分级越低,手术风险越大,如 NYHA 心功能分级 III - IV 级的患者手术死亡率明显高于 I - II 级患者。
糖尿病患者由于血糖控制不佳,容易出现感染、伤口愈合不良等并发症。长期高血糖状态影响机体免疫功能,使患者对手术创伤后的感染抵抗力下降;同时,高血糖环境不利于伤口愈合,增加了术后切口感染、裂开等风险。大模型通过整合患者合并症的详细信息以及手术相关数据,建立合并症风险评估模型,量化合并症对手术风险的影响,帮助医生提前制定应对措施,如优化血糖控制、调整心脏用药等,降低手术风险 。
3.2.3 案例分析
患者张某,58 岁,确诊为直肠癌。患者有 20 年糖尿病病史,平时血糖控制不佳,空腹血糖经常在 10 - 12mmol/L,同时患有冠心病,心功能 NYHA 分级 II 级。将患者的基础状况及合并症信息输入手术风险评估模型,评估结果显示其手术风险为高风险,主要风险因素为糖尿病导致的感染和伤口愈合风险增加,以及冠心病可能引发的心血管事件风险。
基于此评估结果,医生在术前积极调整患者的血糖,通过胰岛素强化治疗将空腹血糖控制在 7mmol/L 左右;同时请心内科会诊,优化冠心病治疗方案,调整药物剂量,改善心肌供血。在手术过程中,密切监测患者的血糖和心血管指标,维持内环境稳定。术后加强抗感染治疗和伤口护理,密切观察患者的病情变化。经过精心治疗和护理,患者顺利度过围手术期,未发生严重并发症,最终康复出院。该案例表明手术风险评估结果能够有效指导临床决策,通过术前针对性的干预措施,可以降低高风险患者的手术风险,提高手术成功率和患者的预后质量 。
四、术中预测
4.1 实时肿瘤状态监测
4.1.1 基于术中影像的肿瘤边界识别
在手术过程中,利用术中超声、荧光成像等影像技术获取肿瘤的实时图像信息。将这些影像数据传输至大模型,大模型通过深度学习算法对影像中的肿瘤区域进行分割和识别,准确界定肿瘤边界。例如,术中超声影像能够清晰显示肿瘤与周围正常组织的回声差异,大模型学习大量超声影像与病理结果对照的数据后,能够根据回声特征准确判断肿瘤边界位置 。对于荧光成像,通过向患者体内注入特定的荧光造影剂,肿瘤组织会发出特异性荧光,大模型根据荧光强度和分布范围,结合已学习的荧光影像模式,精确识别肿瘤边界,为手术医生提供直观、准确的肿瘤边界信息,避免手术切除范围不足或过度切除正常组织 。