ResNet(Residual Network,残差网络)介绍

ResNet(Residual Network,残差网络)是由何恺明团队于2015年提出的深度卷积神经网络架构,其核心创新在于残差学习机制,解决了深度神经网络训练中的梯度消失和网络退化问题,使网络层数可扩展至上千层。以下是其核心原理、结构及影响的系统解析:


一、核心问题与创新背景

  1. 深度网络的瓶颈

    • 梯度消失/爆炸​:传统深层网络(如VGG-19)因反向传播的链式求导导致浅层梯度指数级衰减或激增,难以训练。
    • 退化现象​:实验表明,深层网络的训练误差反而高于浅层网络(如56层比20层误差更高),并非过拟合,而是优化困难所致。
  2. 残差学习的提出
    ResNet通过跳跃连接(Skip Connection)​​ 构建残差块(Residual Block),将输入信号直接传递至输出端,使网络只需学习输入与输出的残差映射​(即 F(x)=H(x)−x),而非完整的非线

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浩瀚之水_csdn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值