目录
一、引言
1.1 研究背景与意义
急性次大面积肺栓塞作为一种严重的心血管疾病,对人类生命健康构成极大威胁。它是指血压正常,但存在右心功能不全或心肌损伤的肺栓塞类型。近年来,随着人口老龄化加剧、生活方式改变以及诊断技术的不断进步,急性次大面积肺栓塞的发病率呈显著上升趋势。相关统计数据显示,在心血管疾病中,其发病率已位居前列,且未经及时治疗的患者死亡率较高,即便经过积极治疗,仍有部分患者会出现严重并发症,严重影响生活质量,并给患者家庭和社会带来沉重的经济负担。
当前,急性次大面积肺栓塞的诊疗面临诸多挑战。在诊断环节,其症状表现缺乏特异性,如呼吸困难、胸痛、咯血等,这些症状与其他心肺疾病极为相似,极易造成误诊和漏诊。现有的诊断方法,像血浆 D - 二聚体检测,虽操作相对简便,但其特异性较低,假阳性结果频发;动脉血气分析、心电图、超声等筛查手段虽具备一定价值,但确诊仍依赖于 CT 肺动脉造影、肺通气灌注显像、肺动脉造影等复杂且存在一定风险的检查。这些检查不仅费用高昂,还可能给患者带来不适以及潜在的并发症风险,例如 CT 肺动脉造影存在辐射风险,肺动脉造影属于有创检查,可能引发穿刺部位出血、血管损伤等问题 。
在治疗方面,如何精准评估患者的病情严重程度和治疗反应,进而选择最为合适的治疗策略,始终是临床上面临的重大难题。治疗方案涵盖抗凝、溶栓、介入治疗和手术治疗等,需要依据患者的具体状况进行个体化选择。以溶栓治疗为例,它虽能快速溶解血栓,恢复肺血流,可同时也会显著增加出血风险,尤其是颅内出血等严重并发症,可能致使患者预后不良。所以,在决定是否进行溶栓治疗时,需要全面综合考虑患者的年龄、基础疾病、出血风险等多种因素,然而目前尚缺乏精准的评估方法和指导依据。
随着人工智能技术的飞速发展,大模型在医疗领域的应用展现出巨大潜力。大模型凭借其强大的数据处理和分析能力,能够整合多源数据,包括患者的临床症状、病史、检查检验结果、影像学资料等。通过深度学习算法,大模型可以深入挖掘其中潜在的规律和关联,实现对急性次大面积肺栓塞的精准预测。将大模型应用于急性次大面积肺栓塞的预测,有助于在疾病发生前精准识别高危人群,提前采取有效的预防措施,比如对长期卧床、手术创伤后、恶性肿瘤等高危患者进行预防性抗凝治疗;在术前准确评估手术风险,制定个性化的手术方案,优化手术流程,降低手术相关的肺栓塞风险;在术中实时监测患者的生命体征和病情变化,及时发现并处理可能出现的并发症;在术后预测恢复情况,优化护理和康复方案,促进患者快速康复,减少并发症的发生。这对于提升急性次大面积肺栓塞的诊疗水平,降低误诊率和漏诊率,改善患者的预后,具有至关重要的现实意义,同时也将为心血管疾病的智能化诊疗开辟全新的道路,提供崭新的思路和方法。
1.2 研究目的与创新点
本研究旨在借助大模型构建一套全面且精准的急性次大面积肺栓塞预测体系,该体系涵盖术前、术中、术后各个阶段,以及并发症风险预测,为临床制定科学合理的手术方案、麻醉方案、术后护理计划等提供坚实有力的支持。具体研究目的如下:
-
精准风险预测:通过深度分析海量丰富的临床数据,运用先进的算法和技术,训练大模型对患者发生急性次大面积肺栓塞的风险进行精确预测,特别是针对具有高危因素的人群,如长期卧床、患有恶性肿瘤、近期接受大型手术等患者,提前识别出他们发生肺栓塞的高风险状态,为早期干预提供可靠依据。
-
个性化方案制定:基于大模型的预测结果,充分考量患者的个体差异,包括年龄、身体状况、基础疾病、心肺功能等,制定个性化的手术方案、麻醉方案和术后护理计划。在手术方案方面,优化手术流程,选择最合适的手术方式和时机,降低手术相关的肺栓塞风险,提高手术的安全性和成功率;在麻醉方案上,确定最佳的麻醉方式、麻醉药物剂量和给药时机,确保麻醉过程平稳,减少对患者心肺功能的影响,降低麻醉相关并发症的发生风险;在术后护理计划中,根据预测结果制定针对性的护理措施,包括生命体征监测、药物治疗管理、康复指导等,促进患者快速康复,提高患者的生活质量。
-
优化术后护理与康复指导:预测术后急性次大面积肺栓塞发生的可能性以及其他并发症风险,如出血、感染、心功能不全等。依据预测结果,为患者提供个性化的术后护理方案和康复指导,帮助患者更好地恢复身体功能,减少并发症的发生,提升患者的康复效果和生活质量。
本研究的创新点主要体现在以下几个方面:
-
多阶段风险预测:首次运用大模型对急性次大面积肺栓塞进行全流程风险预测,涵盖术前风险评估、术中风险预警以及术后和并发症风险预测,为临床提供全面、动态的风险信息,助力医生及时调整治疗策略。
-
个性化方案制定:基于大模型的预测结果,紧密结合患者的个体差异,制定个性化的手术方案、麻醉方案和术后护理计划,实现精准医疗,提高治疗效果和患者的康复质量。
-
多源数据融合:整合患者的临床症状、实验室检查、影像学资料以及基因信息等多源数据,充分挖掘数据背后的潜在信息,提高模型预测的准确性和可靠性,为疾病的诊断和治疗提供更全面的依据。
-
技术验证与临床应用结合:采用严格的技术验证方法,如交叉验证、外部验证等,确保大模型的性能和稳定性。同时,将模型应用于临床实践,通过实际病例验证其临床价值,为大模型在急性次大面积肺栓塞领域的推广应用积累实践经验。
二、肺栓塞概述
2.1 定义与病理生理
急性次大面积肺栓塞属于急性肺栓塞中的一种类型,其在病情严重程度和病理生理特征方面具有独特性。当内源性或外源性栓子随血流进入肺动脉及其分支后,会导致血管的机械性阻塞,阻碍血液的正常流动,使相应区域的肺组织得不到血液灌注,造成肺循环障碍。这种阻塞若导致部分肺叶动脉或多支肺段动脉堵塞,引发了肺血流减少、通气血流比例失调,但血压仍维持在正常范围,同时出现右心功能不全或心肌损伤的情况,即可诊断为急性次大面积肺栓塞。
从病理生理角度来看,栓子阻塞肺动脉会引发一系列复杂的生理变化。一方面,肺血管床面积减少,加上低氧血症以及血栓素 - A2、5 - 羟色胺等缩血管因子的释放增加,导致肺血管收缩,肺血管阻力显著升高,进而引起血流动力学改变。这会使右心室后负荷急剧加重,室壁张力增加,右心室开始扩张。随着右心室压力的不断上升,右心功能逐渐受损,可能出现右心功能不全的表现,如右心室壁运动减弱、三尖瓣反流等 。另一方面,肺循环血流的减少会导致通气血流比例严重失调,造成气体交换障碍,患者出现不同程度的低氧血症和呼吸衰竭,表现为呼吸困难、气短等症状。如果这种病理生理过程得不到及时纠正,会进一步发展,严重时可导致急性心肌缺血坏死、心力衰竭甚至死亡。
2.2 病因与危险因素
急性次大面积肺栓塞的病因主要与栓子的来源密切相关,其中血栓是最为常见的栓子类型,多来源于下肢深静脉血栓形成,脱落后随血流进入肺动脉系统。此外,骨折、脂肪组织创伤时产生的脂肪栓子,分娩过程中进入母体血液循环的羊水栓子,手术、创伤等原因进入血管的气体栓子,以及肿瘤细胞、感染性物质等都有可能成为栓子,导致肺栓塞的发生。
其危险因素众多,涵盖了多个方面。长期卧床是一个重要的危险因素,比如骨折后长期卧床的患者,由于下肢血液循环减慢,血液中的有形成分容易沉积,增加了血栓形成的风险,进而提高了肺栓塞的发病几率。肥胖人群由于血液黏稠度相对较高,血管壁压力较大,容易出现血流不畅的情况,也容易形成血栓,引发肺栓塞。患有心肺疾病的患者,心肺功能受损,血液循环异常,同样增加了血栓形成和肺栓塞的可能性。创伤会使血管内皮受损,激活凝血系统,促使血栓形成,增加肺栓塞风险,严重车祸伤患者便是典型例子。手术过程中可能损伤血管,术后患者活动减少,血液处于高凝状态,尤其是骨科、妇产科手术,术后发生肺栓塞的风险较高。妊娠时孕妇体内的血液处于高凝状态,同时增大的子宫会压迫下腔静脉,导致血流缓慢,也增加了肺栓塞的发生风险。恶性肿瘤患者由于肿瘤细胞释放促凝物质,以及患者可能存在的长期卧床、化疗等因素,使得血液凝固性增加,肺栓塞的发病风险显著升高。
2.3 诊断方法
在急性次大面积肺栓塞的诊断中,血浆 D - 二聚体检测是常用的初步筛查手段。D - 二聚体是交联纤维蛋白在纤溶系统作用下产生的可溶性降解产物,是特异性的纤溶过程标志物。在血栓栓塞时,因血栓纤维蛋白溶解,使其在血中浓度升高,对急性肺栓塞的诊断敏感性高达 92% - 100%,但其特异性较低,仅为 40% - 43%。手术、肿瘤、炎症、感染、组织坏死及其他多种全身疾病都可以使 D - 二聚体升高。因此,在临床上它主要用于作为排除诊断的指标,若其含量低于 500μg/L,可基本排除急性肺栓塞,而作为确定急性肺栓塞的诊断指标,其价值较小。
动脉血气分析也是重要的检查方法之一。急性次大面积肺栓塞患者常表现出低氧血症、低碳酸血症等。低氧血症是由于通气血流比例失调,气体交换障碍导致氧气摄入不足;低碳酸血症则是因为患者呼吸加快,二氧化碳排出增多。通过检测动脉血气分析中的氧分压、二氧化碳分压、血氧饱和度等指标,可以初步判断患者是否存在呼吸功能障碍,对诊断有一定的提示作用,但同样缺乏特异性,不能仅凭此确诊。
CT 肺动脉造影(CTPA)是目前诊断急性次大面积肺栓塞的重要影像学方法,具有无创、敏感性和特异性较高的优点,已成为临床常用的诊断方法。其直接征象表现为管腔内部分充盈缺损或管腔完全阻塞,伴随远端血管不显影;间接征象包括继发的楔形或盘状肺不张、中心肺动脉扩张及远端血管分支减少等。然而,CTPA 在评估直径小于 2mm 的亚段或亚段以下肺血管疑似血栓时,准确性会受到一定影响,需要结合肺 V/Q 显像或选择性肺动脉造影等其他方法来进一步明确诊断 。
肺通气 / 灌注显像也是诊断急性肺栓塞的重要方法之一,其典型特征是肺段或亚段灌注缺损而相应部位通气正常,即 V/Q 不匹配。该方法诊断急性肺栓塞的敏感性较高,但特异性相对不足,肺灌注显像正常可基本排除肺栓塞。一般首选 CTPA 等影像学手段,若患者肾功能不全或对比剂过敏,可行肺 V/Q 显像明确诊断。
肺动脉造影是诊断急性次大面积肺栓塞的 “金标准”,它能够直接清晰地显示肺动脉内的血栓情况,包括血栓的位置、形态、范围等,但由于其属于有创检查,存在一定的风险,如穿刺部位出血、血管损伤、造影剂过敏等,且操作相对复杂,费用较高,所以通常不作为首选检查方法,而是在其他检查无法明确诊断或临床高度怀疑但其他检查结果阴性时考虑使用。
三、大模型预测肺栓塞的原理与方法
3.1 模型选择与架构
在众多大模型中,Transformer 架构的预训练模型脱颖而出,成为预测急性次大面积肺栓塞的理想选择。与传统的循环神经网络(RNN)及其变体长短期记忆网络(LSTM)相比,Transformer 架构凭借其自注意力机制,能够并行处理序列数据,有效解决了 RNN 和 LSTM 在长序列处理时梯度消失或爆炸的问题,并且能更高效地捕捉序列中不同位置之间的依赖关系 。例如,在处理患者长时间跨度的病历数据时,Transformer 架构可以迅速准确地关联不同时间节点的信息,而 RNN 和 LSTM 则可能因信息的逐步传递而出现信息丢失或扭曲。
以 GPT(Generative Pre-trained Transformer)系列为代表的仅解码器架构,在自然语言处理任务中展现出强大的文本生成能力;BERT(Bidirectional Encoder Representations from Transformers)为代表的仅编码器架构,在理解文本语义方面表现卓越 。考虑到肺栓塞预测需要综合分析多源数据,包括临床症状、检查结果等文本信息以及影像数据,我们选择基于 Transformer 架构的多模态大模型。该模型整合了自然语言处理模块和图像处理模块,能够对不同类型的数据进行有效融合和分析。自然语言处理模块可以深入理解病历中的症状描述、诊断信息等,图像处理模块则能对 CT、MRI 等影像数据进行特征提取和分析。通过跨模态注意力机制,模型可以实现不同模态数据之间的信息交互和融合,从而更全面地捕捉与肺栓塞相关的特征和模式,为准确预测提供有力支持。
3.2 数据收集与预处理
数据收集涵盖了多方面的渠道。从医院信息系统中,收集患者的电子病历数据,这些病历详细记录了患者的基本信息,如年龄、性别、既往病史等,同时包含了丰富的临床症状描述,像胸痛、呼吸困难、咳嗽等症状的发作时间、程度和变化情况。检查检验结果也被一并收集,包括血常规、凝血功能指标、D - 二聚体水平等实验室检查数据,以及心电图、胸部 X 线、CT 肺动脉造影、超声心动图等影像学检查资料。此外,还收集了患者的治疗过程信息,例如使用的药物种类、剂量和治疗时间,以及手术相关信息,如手术类型、手术时间、术中情况等 。
在数据预处理阶段,清洗工作至关重要。首先,对收集到的数据进行去重处理,确保每条数据的唯一性,避免重复数据对模型训练产生干扰。接着,仔细识别并纠正数据中的错误值,如将错误录入的检查结果、不符合逻辑的症状描述进行修正。对于缺失值,根据数据的特点和分布情况进行合理填充。对于数值型数据,如年龄、检查指标数值等,若存在缺失值,采用均值、中位数或基于机器学习算法的预测值进行填充;对于文本型数据,如症状描述、病历记录等,若存在少量缺失内容,可通过上下文语义分析进行补充或根据相似病历进行填充。
数据标准化是使不同来源、不同格式的数据具有统一的标准和规范。将所有数值型数据进行归一化或标准化处理,使其具有相同的量纲和取值范围。对于年龄数据,可将其归一化到 0 - 1 的区间;对于实验室检查指标,根据其正常参考范围进行标准化,使其均值为 0,标准差为 1。同时,对文本数据进行规范化处理,将所有文本转换为小写,去除特殊字符和停用词,如 “的”“了”“在” 等对语义理解贡献较小的词汇,提高文本处理的效率和准确性。
特征工程旨在从原始数据中提取出对模型预测最有价值的特征。对于数值型数据,进行特征缩放,采用标准化或归一化方法,消除不同特征之间的量纲差异,提升模型训练的稳定性和收敛速度。对于分类数据,如性别、疾病类型等,采用独热编码或标签编码等方式将其转换为数值形式,便于模型处理。在文本数据处理中,运用词嵌入技术,如 Word2Vec、GloVe 等,将文本中的每个单词映射为低维稠密向量,捕捉单词之间的语义关系,为模型提供更丰富的语义特征。此外,还可以根据临床知识和经验,构造一些新的特征,如将多个相关的实验室检查指标进行组合计算,得到反映患者病情严重程度的综合指标;根据患者的症状出现时间和持续时间,构造时间相关的特征,以更好地描述病情的发展变化过程。
3.3 模型训练与优化
模型训练基于大量精心标注的数据集展开,这些数据集涵盖了丰富多样的病例,包括不同年龄、性别、基础疾病状况以及不同严重程度的急性次大面积肺栓塞患者。数据标注由经验丰富的临床医生严格按照统一的标准和规范进行,确保标注的准确性和一致性。标注内容不仅包含患者是否患有急性次大面积肺栓塞的明确诊断结果,还详细标注了病情的严重程度分级、发病时间、治疗方案等关键信息,为模型提供全面且准确的学习样本。
为了提高模型的性能和泛化能力,采用 K 折交叉验证的方法。将标注好的数据集随机划分为 K 个互不重叠的子集,每次训练时,选择其中 K - 1 个子集作为训练集,用于模型的训练和参数更新;剩余的 1 个子集作为验证集,用于评估模型在训练过程中的性能表现。通过循环 K 次,使

最低0.47元/天 解锁文章
652

被折叠的 条评论
为什么被折叠?



