图像处理之HSV颜色空间

目录

1 RGB 的局限性

2 HSV 颜色空间

3 RGB与HSV相互转换

4 HSV颜色模型对图像的色相、饱和度和明度进行调节

5 演示Demo

5.1 开发环境

5.2 功能介绍

5.3 下载地址

参考


1 RGB 的局限性

        RGB 是我们接触最多的颜色空间,由三个通道表示一幅图像,分别为红色(R),绿色(G)和蓝色(B)。这三种颜色的不同组合可以形成几乎所有的其他颜色。

        RGB 颜色空间是图像处理中最基本、最常用、面向硬件的颜色空间,比较容易理解。

        RGB 颜色空间利用三个颜色分量的线性组合来表示颜色,任何颜色都与这三个分量有关,而且这三个分量是高度相关的,所以连续变换颜色时并不直观,想对图像的颜色进行调整需要更改这三个分量才行。

        自然环境下获取的图像容易受自然光照、遮挡和阴影等情况的影响,即对亮度比较敏感。而 RGB 颜色空间的三个分量都与亮度密切相关,即只要亮度改变,三个分量都会随之相应地改变,而没有一种更直观的方式来表达

        但是人眼对于这三种颜色分量的敏感程度是不一样的,在单色中,人眼对红色最不敏感,蓝色最敏感,所以 RGB 颜色空间是一种均匀性较差的颜色空间。如果颜色的相似性直接用欧氏距离来度量,其结果与人眼视觉会有较大的偏差。对于某一种颜色,我们很难推测出较为精确的三个分量数值来表示。所以,RGB 颜色空间适合于显示系统,却并不适合于图像处理。

2 HSV 颜色空间

        基于上述理由,在图像处理中使用较多的是 HSV 颜色空间,它比 RGB 更接近人们对彩色的感知经验。非常直观地表达颜色的色调、鲜艳程度和明暗程度,方便进行颜色的对比。

        在 HSV 颜色空间下,比 RGB 更容易跟踪某种颜色的物体,常用于分割指定颜色的物体。

        HSV 表达彩色图像的方式由三个部分组成:

  • Hue(色调、色相),相当于基调,是下图的俯视图得到的圆,圆上不同位置的颜色基调不同,把颜色分成了360°,每个位置有不同的颜色基调;

  • Saturation(饱和度、色彩纯净度):纯度,沿着俯视图得到的圆的半径看,因为圆弧上的点代表该处的颜色的基调,那么半径上就是从纯白色到该基调颜色过渡过程中不同位置的纯度,在圆心处纯度为0,在圆弧上(该色调)纯度为100;

  • Value(明度):亮度,沿着圆柱的高来看,圆柱表面上平行于圆柱轴上的点的颜色基调相同,纯度也相同,但是明暗程度不同。同时,该圆柱的半径也不同,相当于磁盘的柱面。

        用下面这个圆柱体来表示 HSV 颜色空间,圆柱体的横截面可以看做是一个极坐标系 ,H 用极坐标的极角表示,S 用极坐标的极轴长度表示,V 用圆柱中轴的高度表示。

  • 色相H:表示色彩信息,即所处的光谱颜色的位置。该参数用一角度量来表示,取值范围为0°~360°。其中0°为红色,60°为黄色,120°为绿色,180°为青色ÿ

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值