【MobileNet-V1】深度学习模型压缩之MobileNetv1

论文名称
深度学习模型压缩之MobileNetv1
参考链接
书摘
摘要
1.引言
2.现有工作
3.MobileNet结构
  • 3.1 深度可分离卷积
  • 3.2 网络结构和训练
  • 3.3 宽度乘法器:更薄的模型
  • 3.4 分辨率乘法器:约化表达
4 实验
  • 4.1 模型选择
  • 4.2 模型压缩超参数
  • 4.3 细粒度识别
  • 4.4 大规模地理信息
  • 4.5 人脸属性
  • 4.6 目标检测
  • 4.7 人脸嵌入
5 结论
 
                                                                   思考
文中对于MobileNet 第一个版本论文做了详细的翻译,主要工作创新点:
  1. 采用可分离卷积的方式进行特征提取
  2. 创新的使用了宽度乘法器和分辨率乘法器的方式进行进一步网络处理
   宽度乘法器:其实就是对 输入通道数M变成了 αM 、输出通道数变成  αN
   分辨率乘法器:对每一层的输出的高和宽进行权重处理
 
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值