tensorflow神经网络调参记录

博主使用TensorFlow处理材料科学领域的高维数据,通过调整batch_size和神经网络结构,如隐藏层节点数量,观察模型性能变化。在不同batch_size和隐藏层配置下,测试集的R2分数有所波动,最高达到0.844792。实验表明,参数调整对模型性能有显著影响。
摘要由CSDN通过智能技术生成

1.因为做的是材料科学方面的,用到了tensorflow神经网络来处理数据
由于特征维度比较特殊,大概有上万维度的特征数值,三千多个数据

def build_model():
    model=keras.Sequential()
    model.add(layers.Dense(128,input_shape=[len(normed_train_data.keys())],activation='relu'))
    model.add(keras.layers
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值