提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
前言
提示:以下是本篇文章正文内容,下面案例可供参考
一、树相关概念
1.树
树:n(n>=0)个结点的有限集合。n = 0 ,空树。
在任意一个非空树中,
1,有且仅有一个特定的根结点
2,当n>1 时,其余结点可分为m个互不相交的有限集合T1,T2,T3.。。。。Tm,其中每一个
集合又是一个树,并且称谓子树。
结点拥有子树的个数称谓结点的度。度为0的结点称谓叶结点。度不为0,称谓分支结点。
树的度数:
是这棵树中,最大的结点的度数,称谓树的度数。
树的深度或高度:
从根开始,根为第一层,根的孩子为第二层。
树的存储
顺序结构,链式结构。
2.二叉树
二叉树,binary tree
n个结点的有限集合,集合要么为空树,要么由一个根结点和两棵互不相交,分别称谓根结点的左子树和右子树的二叉树组成。。
特点,
1,每个结点最多两个子树。
2,左子树和右子树是有顺序的,次序不能颠倒。
3,如果某个结点只有一个子树,也要区分左,右子树。
3.特殊的二叉树
1,斜树,所有的结点都只有左子树,左斜树,所有结点都只有右子树,右树。
2,满二叉树,所有的分支结点都存在左右子树,并且叶子都在同一层上。
3,完全二叉树,对于一颗有n个结点的二叉树按层序编号,如果编号i(1<=i<=n)的结点于同样深度的满二叉树中编号为i的结点在二叉树中位置完全相同,则这可树为完全二叉树。
特性
1,在二叉树的第i层上最多有2^(i-1)个结点 i>=1
2,深度为k的二叉树至多有2^k -1 个结点 k>=1
3,任意一个二叉树T,如果其叶子结点的个数是n0,度数为2的结点数为n2, n0 = n2 +1;
4,有n个结点的完全二叉树深度为(logn/log 2) +1;
4.二叉树遍历方法
层序,
前序,根左右,先访问根,然访问左,访问右。
中序,左根右,先从根开始(不是先访问根),从左开始访问,在访问根,在访问右结点。
后序,左右根,先从根开始(不是先访问根),先访问左,在访问右。在访问根。
二、源码
1.项目结构
代码如下(示例):
.
├── a.out
├── main.c
├── tree.c
└── tree.h
0 directories, 4 files
2.源码
#include "tree.h"
int main(int argc, const char *argv[])
{
BTMNode * pRoot = NULL;
pRoot = createBinTree();
midOrder(pRoot);
printf("\n");
frontOrder(pRoot);
printf("\n");
rearOrder(pRoot);
printf("\n");
printf("cnt%d\n",getLenbBTM(pRoot));
destroy(&pRoot);
return 0;
}
#include "tree.h"
char tree[] = "ACEG###FH#N###DB#M###" ;
int idx = 0;
int cnt = 0;
BTMNode* createBinTree()
{
char ch = 0;
ch = tree[idx++];
BTMNode* pNode = NULL;
if('#' == ch)
{
return NULL;
}
else
{
pNode = malloc(sizeof(BTMNode));
if(NULL == pNode)
{
perror("malloc");
return NULL;
}
pNode->data = ch;
pNode->pL = createBinTree();
pNode->pR = createBinTree();
}
return pNode;
}
void midOrder(BTMNode *pRoot)
{
if(NULL == pRoot)
{
return ;
}
midOrder(pRoot->pL);
printf("%c ",pRoot->data);
midOrder(pRoot->pR);
}
void frontOrder(BTMNode *pRoot)
{
if(NULL == pRoot)
{
return ;
}
printf("%c ",pRoot->data);
frontOrder(pRoot->pL);
frontOrder(pRoot->pR);
}
void rearOrder(BTMNode *pRoot)
{
if(NULL == pRoot)
{
return ;
}
rearOrder(pRoot->pL);
rearOrder(pRoot->pR);
printf("%c ",pRoot->data);
}
int getLen(BTMNode* pRoot)
{
if(pRoot == NULL)
{
return cnt;
}
cnt++;
getLen(pRoot->pR);
getLen(pRoot->pL);
}
int getLenbBTM(BTMNode* pRoot)
{
if(pRoot == NULL)
{
return 0;
}
return (getLenbBTM(pRoot->pL)+getLenbBTM(pRoot->pR)+1);
}
void destroy(BTMNode**ppRoot)
{
if((*ppRoot) == NULL)
{
return ;
}
destroy(&(*ppRoot)->pL);
destroy(&(*ppRoot)->pR);
free(*ppRoot);
*ppRoot = NULL;
}
#ifndef _TREE_H_
#define _TREE_H_
#include <stdio.h>
#include <stdlib.h>
typedef char DataType;
typedef struct TreeNode
{
DataType data;
struct TreeNode* pL;
struct TreeNode* pR;
}BTMNode;
extern BTMNode* createBinTree();
extern int cnt;
extern void midOrder(BTMNode *pRoot);
extern void frontOrder(BTMNode*);
extern void rearOrder(BTMNode*);
extern int getLen(BTMNode*);
extern void destroy(BTMNode**);
extern int getLenbBTM(BTMNode* pRoot);
#endif