机器学习常识 1: 不确定性

摘要: 机器学习一般用于解决不确定性问题.

1. 基本概念

现实生活中确定性的例子:

  • 已知我的工作量, 求我本月的收入 (财务处不会搞错).
  • 已知我的各科成绩, 求总分 (老师不会搞错).
  • 已知二哈撕了沙发, 求它是否将拥有完整的汪生 (主人不会惯着).

现实生活有更多不确定性的例子:

  • 如果我去向那个女生表白, 她会同意吗? (Y/N)
  • 哪个国家会夺得下届奥运会团体射击冠军? (中国队/美国队/法国队/…)
  • 根据一张照片判断人的年龄. ( [ 0 , 100 ] [0, 100] [0,100])
  • 根据某只股票这段时间的价格波动, 判断明天的涨/跌. ( [ − 10 % , + 10 % ] [-10\%, +10\%] [10%,+10%])
  • 明天的天气如何? (有雨/无雨, 有风/无风, 有太阳/无太阳, …)
  • 把一大堆照片分成若干小堆, 怎么分最好?

所谓不确定性, 是指我们在进行预测的时候, 不能够保证 100% 的准确.

机器学习的本质, 就是 “猜”, 谁猜得更好, 谁就赢了.

2. 特例

机器学习有时也做一些确定性问题. 但这些问题的复杂度过高, 求最优解从计算上来说不可行 (一般是 NP 难问题之类), 所以使用启发式算法之类求次优解.
另外有一些频繁项集挖掘之类的工作, 可以归为模式挖掘, 但我个人不建议归为机器学习, 因为它并不涉及预测.

3. 不确定性产生的原因

  • 信息不足. 按理说那个女生要答应我的, 但我不知道她刚挂科心情不好, 贸然行动导致被拒. 只考虑股价而不关心政策的变化, 注定要被深度套牢.
  • 噪音. 照片太模糊, 粉丝都无法区分是张曼玉还是王祖贤 (唉, 暴露我的年龄啦).

4. 延伸 (胡扯)

既然机器学习的特长是猜, 那它可以用于算命吗?
回答: 已经有人用它来算命了. 但我建议你不要用: 如果它没猜对, 你还用它干啥? 如果它猜对了, 你的人生就失去了各种惊喜与惊吓.

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值