2025 新生 DL-FWI 培训

摘要: 本贴给出 8 次讨论式培训的提纲, 每次培训 1 小时.

1. Basic concepts

主动学习: 提问, 理解, 继续追问. 通过不断迭代, 逐步提升问题的质量, 加深理解.

  • 1.1 Seismic exploration
    问 DeepSeek (下同): 为什么进行地震勘探?
    问: 地震勘探一般的深度是多少?

  • 1.2 Sesmic data processing – regular process
    问: 如何进行地震数据处理?
    反过来思考: “什么是地震数据处理” 这个问题不太合适, 因为地震数据采集, 数据处理, 数据解释是三个人为定义的步骤.
    地震数据处理有哪几类方法?
    期待的答案是: 常规, 基于正演模拟, 深度学习三大类, 但 DS 给的分类方式不同.

  • 1.3 Full waveform inversion
    问: 基于正演模拟的全波形反演是怎么做的? 有哪些具体的优势与劣势?

  • 1.4 Deep learning-based full waveform inversion
    问: 深度全波形反演是怎么做的? 有哪些具体的优势与劣势?

2. Network structure

  • 2.1 InversionNet
    Encoder-decorder structure
    为什么要进行编码与解码?
    机器与人类对事物的理解是不一样的. 我们需要知道数据的本质, 需要对数据进行压缩、表征.
    例: 两个实数表示一个二维坐标点. 能不能用一个实数表示? 一般是不行的. 特殊情况呢, 例如在一条线上的坐标点.
    方法 1: 只记录横坐标即可.
    方法 2: 记录该点到原点的距离. 原始基向量为 ( 1 , 0 ) (1, 0) (1,0) 和 (0, 1). 形成一组新的基向量: ( 2 / 2 , 2 / 2 ) (\sqrt{2}/2, \sqrt{2}/2) (2 /2,2 /2), ( 2 / 2 , − 2 / 2 ) (\sqrt{2}/2, - \sqrt{2}/2) (2 /2,2 /2). 点 ( 1 , 1 ) (1, 1) (1,1)在新的坐标系下变成 ( 2 , 0 ) (\sqrt{2}, 0) (2 ,0).
    基向量是怎么来的? 可以观察、学习获得.

神经网络试图原始地震数据, 获得它的内部表示 (可以看成一类压缩), 解码成速度模型. 卷积核就是学习出来的, 类似于基向量的东西.

学习 PCA, 理解降维.
所有的神经网络只做一件事情: 特征提取.

  • 2.2 FCNVMB
    UNet: 跳跃连接 (较为原始的特征, 与原始数据的一致性)
  • 2.3 DDNet
    Multi-task

3. Network components

  • 3.1 Deformable convolution (指定方向与不指定方向)
  • 3.2 Dense block
  • 3.3 Spatial attention module
  • 3.4 Pre-trained module (外接)
    深入理解: 地震数据的特点, 计算机视觉最新的工具 (模块). 结合创新.
    http://fansmale.com/publications.html
    python < java < 图示 < 数学表达式
    ChatGPT 2.0 C 代码: 1000+ 行

4. Loss function

多数机器学习方法, 其创新点就只有一个损失函数, 甚至该损失函数的一个正则项.
正则项的作用: 防止过拟合, 提升泛化性.

  • 4.1 Pixel: L1 and L2
  • 4.2 Boundary
  • 4.3 图像相似性
    反向梯度求解: Adam optimizer 自动处理
    训练、验证、测试

5. Training

同样的知识, 不同老师的教学效果不同.
元学习: learn to learn.

  • 5.1 Training detail
    Learning rate, 可以由大到小
    Training epochs, 可使用验证集
  • 5.2 Curriculum learning
    由易到难. 易与难, 人类与机器的理解可能不同, 因此需要尝试.
    机器自己来确定样本的难度.
    计算机的发展史, 就是计算机的血泪史. 人不断丢锅给机器.
  • 5.3 Transfer learning
    源域标签多, 目标域标签少.
    源域与目标域的分布不同.
    解决泛化性问题.
    与经典的机器学习方法如决策树相比, 人工神经网络很自然地支持迁移学习.
    迁移学习在如下情况困难: 1) 分布差异大; 2) 目标域标签很少.
  • 5.4 Domain adaptation
    目标域无标签.
    特别有挑战性, 也特别有实际意义.

6. Acquisition geometry

观测系统
每一道数据都对应了一个炮点和一个检波点.
射线跟踪法.
简单的方式是做单炮反演, 再将结果叠加.

6.1 多次覆盖

多炮共用了一些检波器.

6.2 正常的陆地观测系统

滑动窗口.

6.3 海上观测系统

拖缆.
海上可以获得干净 (没有波的叠加) 的数据. 用初至数据就够了, 越远的检波点, 采集的初至对应于越深的地层.
在这里插入图片描述

6.4 特殊的观测系统

OpenFWI, 仅作研究时使用: 不同的炮点, 同一组检波点.
训练的深度网络无法直接适用于现场. 因为机器学习要求训练数据与测试数据的格式是相同的.

7. Problem statement

从输入到输出是否可以建立可靠的映射?

7.1 Input

  • 不同的基础构造
    平层、断层、曲面、盐体
  • 不同的维度
    一维: 单个检波器
    二维: 单炮, 多个检波器 (共炮点道集); 多炮, 一个检波器 (共接收点道集); 共中心点道集.
    三维: 多炮, 多检波器.
    四维: 检测三维的地下, 但炮点又组成时序.
  • 不同区域
    陆地 (炮点为中心点, 或圆心)
    海上
    深层 (3500 m+)
    浅层
  • 主动振源/被动振源

7.2 Output

  • 地质参数: 速度模型, 密度, Q, 反射系数, 波阻抗, 孔隙度
  • 地质构造: 盐体, 圈闭, 油层, 气层

7.3 Optimization objective

预测结果与实际标签之间的差异. ℓ 1 \ell_1 1, ℓ 2 \ell_2 2 损失.
最小化目标函数. 可以加正则项.
拟合能力 vs. 预测能力.

7.4 Constraint

  • 边界条件
  • 输入、输出数值的范围
  • 层内速度的一致性
  • 界面连续性

具体问题/任务
1D CMP based inversion
2D velocity inversion
3D inversion
Machine learning can never solve a problem, only can handle an issue.

8. Challenges

有困难要上; 没有困难, 创造困难也要上!

8.1 Different data distribution

Different data complexity
Noise
Transfer learning

8.2 Interpretability

PINN: Physics informed neural network

8.3 Data size

Too big

8.4 Dataset size

Few field data

8.5 Speed and accuracy

Training time
Prediction accuracy

8.6 End-to-end = Image-to-image

单炮数据的本质是多时序, 也就是多个检测波器采集的一段时间的数据. 是一个矩阵, 经常可视化一个图像.
速度模型的本质是地下一个截面上的每个位置的 (地震波) 传播速度, 也是一个矩阵, 经常可视化为一个图像.
全波形反演的本质: 时深转换.

Just do it! Repeat it. Think it over.
Research = re-search.
Why not local-optima? Because end-to-end DL-FWI has no search/iteration at all in the prediction stage.

PAC 理论

In the training stage, initial model = ground-truth + noise (ok).
In the testing statge, initial model = raw data + InversionNet.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值