摘要: 多示例学习按照“包-样本”的方式组织数据, 并在包的级别上给标签.
1. 基本概念
与多标签学习类似, 多示例学习从数据的角度进行概念的扩展.
一个数据集由若干包 (bag) 组成, 每个包有若干示例 (即样本、对象, sample). 如果某个包中含有至少一个正样本, 则它为正包, 否则为负包.
说明:
- 由于标签打给包的, 最终可能也不知道具体的样本是正是负.
- 在进行预测的时候, 也仅给包打标签.
- 如果每个包仅有一个示例, 则退化为经典的机器学习.
2. 常见方案
- 包映射. 将一个包映射为一个对象.
- 新的距离计算方式. 两个包的距离可以定义为:
- 最近点对的距离;
- 最远点对的距离;
- 包重心之间的距离.