机器学习常识 18: 多示例学习

多示例学习扩展了传统机器学习的概念,以‘包-样本’形式组织数据,标签赋予包级别。正包包含至少一个正样本,反之为负包。预测时仅对包进行标签预测。包映射和新距离计算方法如最近点对、最远点对和包重心距离是常见处理策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要: 多示例学习按照“包-样本”的方式组织数据, 并在包的级别上给标签.

1. 基本概念

与多标签学习类似, 多示例学习从数据的角度进行概念的扩展.
一个数据集由若干包 (bag) 组成, 每个包有若干示例 (即样本、对象, sample). 如果某个包中含有至少一个正样本, 则它为正包, 否则为负包.
说明:

  • 由于标签打给包的, 最终可能也不知道具体的样本是正是负.
  • 在进行预测的时候, 也仅给包打标签.
  • 如果每个包仅有一个示例, 则退化为经典的机器学习.

2. 常见方案

  • 包映射. 将一个包映射为一个对象.
  • 新的距离计算方式. 两个包的距离可以定义为:
    • 最近点对的距离;
    • 最远点对的距离;
    • 包重心之间的距离.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值