数据科学中常见的9种距离度量方法,包括欧氏距离、切比雪夫距离、半正矢距离等

1、欧氏距离(Euclidean Distance)
在这里插入图片描述

欧式距离可解释为连接两个点的线段的长度。欧式距离公式非常简单,使用勾股定理从这些点的笛卡尔坐标计算距离。
在这里插入图片描述
代码实现:

import numpy as np
x=np.random.random(10)
y=np.random.random(10)

#方法一:根据公式求解
d1=np.sqrt(np.sum(np.square(x-y)))

#方法二:根据scipy库求解
from scipy.spatial.distance import pdist
X=np.vstack([x,y])
d2=pdist(X)

缺点:尽管这是一种常用的距离度量,但欧式距离并不是尺度不变的,这意味着所计算的距离可能会根据特征的单位发生倾斜。通常,在使用欧式距离度量之前,需要对数据进行归一化处理。

此外,随着数据维数的增加,欧氏距离的作用也就越小。这与维数灾难(curse of dimensionality)有关。

用例:当你拥有低维数据且向量的大小非常重要时,欧式距离的效果非常好。如果在低维数据上使用欧式距离,则如 k-NN 和 HDBSCAN 之类的方法可达到开箱即用的效果。

2、余弦相似度(Cosine Similarity)
在这里插入图片描述

余弦相似度经常被用作抵消高维欧式距离问题。余弦相似度是指两个向量夹角的余弦。如果将向量归一化为长度均为 1 的向量,则向量的点积也相同。

两个方向完全相同的向量的余弦相似度为 1,而两个彼此相对的向量的余弦相似度为 - 1。注意,它们的大小并不重要,因为这是在方向上的度量。
图片
代码实现:

import numpy as np

def bit_product_sum(x, y):
    return sum([item[0] * item[1] for item in zip(x, y)])

def cosine_similarity(x, y, norm=False):
    """ 计算两个向量x和y的余弦相似度 """
    assert len(x) == len(y), "len(x) != len(y)"
    zero_list = [0] * len(x)
    if x == zero_list or y == zero_list:
        return float(1) if x == y else float(0)

    # method 1
    res = np.array([[x[i] * y[i], x[i] * x[i], y[i] * y[i]] for i in range(len(x))])
    cos = sum(res[:, 0]) 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fantasticString

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值