「你的显卡落伍了吗?」AMD 全系显卡 AI 计算力排行大曝光!

内容预告

AMD 显卡在 AI 计算领域真的能抗衡 NVIDIA 吗?今天,我们通过对比 AMD Radeon™ RX 7900 XTX、RTX 4090、RTX 3090 Ti,以及 AMD 全系显卡的算力参数,深度剖析 AMD 在 AI 领域的表现!文末更有 GPU 选购建议,千万别错过!

为爱发电,如果对你有帮助,请不吝 点赞关注,谢谢 😁


🔥 AMD 显卡 vs. NVIDIA 显卡:AI 计算的较量

在 AI 计算领域,NVIDIA 的 CUDA 生态几乎是默认选择,但 AMD 也在奋力追赶。特别是近两年,AMD 的 ROCm(类似 CUDA 的 AI 计算生态)不断完善,部分显卡甚至可以高效运行 LLM 和 Stable Diffusion。

那么,AMD 的旗舰卡 RX 7900 XTX 真的能在 AI 任务中撼动 RTX 4090 吗?我们来看数据对比:

AMD Radeon™ RX 7900 XTXNVIDIA® GeForce RTX™ 4090NVIDIA® GeForce RTX™ 3090 Ti
核心数6144 Stream Processors16384 CUDA Cores10752 CUDA Cores
显存24GB GDDR624GB GDDR6X24GB GDDR6X
FP16 算力123 TFLOPS330 TFLOPS160 TFLOPS
显存带宽960 GB/s1008 GB/s1008 GB/s
功耗 (TDP)320W450W450W
价格$999$1599$1999
image.png

📌 结论

  • 算力上:RTX 4090 依旧无敌,尤其是 FP16 计算,直接碾压 RX 7900 XTX。
  • 价格上:RX 7900 XTX 便宜 600 美元,性价比更高。
  • 适合大模型推理吗? AMD 需要更完善的软件支持,目前 MLC AI(可在 AMD 显卡上运行大模型)是个不错的方案 👉 MLC AI 让 AMD GPU 运行 LLM

📈 AMD 显卡 AI 计算表现

除了旗舰 RX 7900 XTX,AMD 还有哪些显卡适合 AI 计算?来看下各型号的算力表现👇
其中 TFLOPs/W 超过 0.1 的显卡被重点加粗

显卡功耗 (W)TFLOPsTFLOPs/W显存容量
RX 7900 XTX35561.440.17324GB GDDR6
RX 7900 XT31551.610.16420GB GDDR6
RX 7900 GRE26045.9780.17716GB GDDR6
RX 7800 XT26337.3250.14216GB GDDR6
RX 7700 XT24535.1680.14412GB GDDR6
RX 7600 XT19021.750.11516GB GDDR6
RX 7650 GRE17021.750.1288GB GDDR6
RX 760016521.750.1328GB GDDR6
RX 6950 XT33523.6540.07116GB GDDR6
RX 6900 XT水冷版33023.040.07016GB GDDR6
RX 6900 XT30023.040.07716GB GDDR6
RX 6800 XT30020.7360.06916GB GDDR6
RX 680025016.1660.06516GB GDDR6
RX 6750 XT25013.3120.05312GB GDDR6
RX 6750 GRE 12GB23013.3120.05812GB GDDR6
RX 6750 GRE 10GB17013.3120.07810GB GDDR6
RX 6700 XT23013.2150.05812GB GDDR6
RX 6650 XT18010.7930.0608GB GDDR6
RX 6600 XT16010.6050.0668GB GDDR6
RX 66001328.9280.0688GB GDDR6
RX 6500 XT1075.7650.0544GB GDDR6
RX 6400533.5650.0674GB GDDR6
RX 5700 XT 50周年纪念版23510.1380.0438GB GDDR6
RX 5700 XT2259.7540.0438GB GDDR6
RX 57001807.9490.0448GB GDDR6
RX 5600 XT1507.1880.0486GB GDDR6
RX 56001506.390.0436GB GDDR6
RX 5500 XT1305.1960.0408GB GDDR6
Radeon VII30013.8240.04616GB HBM2
RX Vega 64水冷34513.7380.0408GB HBM2
RX Vega 6429512.6650.0438GB HBM2
RX Vega 5621010.5440.0508GB HBM2
RX 5902257.1190.0328GB GDDR5
RX 5801856.1750.0334/8GB GDDR5
RX 580 2048SP1506.1750.0414/8GB GDDR5
RX 5701505.0950.0344/8GB GDDR5
RX 560 XT1502.1060.0144GB GDDR5
RX 560702.6110.0374GB GDDR5
RX 550501.2110.0242/4GB GDDR5

🎯 你该买 AMD 还是 NVIDIA?

目前 AMD 的 AI 软件生态正在逐步发展,但是仍然还有很多 GPU 不支持的情况,需要多一点折腾,但是性价比高。
NVIDIA 相对生态完整,少折腾。

🎯 AMD 显卡 AI 计算推荐指南:选购前你需要知道的事!

💡 AMD 目前的 AI 计算支持仍存在局限,主要由于 ROCm(AI 计算框架)支持不完善

  • 官方支持的 GPU:完全支持 RX 7900 XTX / 7900 XT / 7900 GRE
  • 最低支持显卡:从 RX 6600 开始(部分功能受限)。
  • Linux 兼容性较差仅支持 RX 7900 系列和 Radeon VII(参考 Tom’s Hardware)。
  • Windows 兼容性较好:大部分 RX 6000 / 7000 系列均支持,但 RX 6700 - RX 6750 XT 不支持 HIP SDK,仅支持 RuntimeROCm 官方支持列表)。

✅ AI 计算显卡推荐:按需求选购

需求类型推荐显卡关键参数优势
专业级 AI 训练(LLM、大模型)RX 7900 XTX24GB 显存 / 61.44 TFLOPs / 0.173 TFLOPs/W
高能效生成式 AI(Stable Diffusion)RX 7900 GRE✅ 16GB 显存 / 0.177 TFLOPs/W(能效冠军)
实时推理 & 多任务处理RX 7800 XT✅ 16GB 显存 / 37.3 TFLOPs / 230W 低功耗
预算友好型 AI 开发RX 6750 GRE✅ 12GB 显存 / 超高性价比(适合入门 AI)
边缘计算 & AI 部署RX 7600 XT✅ 16GB 显存 / 单槽设计 + 190W 超低功耗 / FP16 加速

🔍 选购建议

  • 如果你是专业 AI 研究人员,建议仍优先选择 NVIDIA RTX 4090,因为 CUDA 生态更完善,训练效率更高。
  • 如果你在意性价比 & 轻量 AI 计算RX 7900 GRE / 7800 XT 是不错的选择。
  • 如果你的 AI 计算任务较轻,如边缘计算 & AI 部署RX 7600 XT 低功耗且可行。

📢 AMD AI 计算生态仍在发展中,未来 ROCm 可能会带来更多突破,但目前仍需谨慎选择!

  • 显存门槛:Stable Diffusion XL 需 ≥12GB,LLaMA-13B 需 ≥16GB
  • 架构优势:RDNA3 显卡支持 AI 矩阵扩展指令(WMMA),加速 Transformer 架构
  • 生态现状:ROCm 6.1+ 已原生支持 PyTorch 2.4,CUDA 代码转换效率达 92%

🧐 为什么 AMD 显卡 AI 表现一直弱于 NVIDIA?

AMD 在 AI 计算上确实比 NVIDIA 弱,主要原因:

  1. 软件生态落后:NVIDIA 的 CUDA 已经发展十几年,AMD 的 ROCm 生态还不够完善,很多 AI 框架都优先支持 CUDA。
  2. 硬件优化不足:NVIDIA 的 Tensor Cores 专门为 AI 计算优化,而 AMD 主要依赖 FP16/FP32 计算,效率不如 Tensor Cores。
  3. 驱动问题:AMD 在 AI 计算驱动上存在兼容性问题,NVIDIA 体验更顺滑。

💡 结论:AMD 能否挑战 NVIDIA?

目前来看,AMD 依然无法全面撼动 NVIDIA 在 AI 计算上的地位,但随着 ROCm 生态的完善、MLC AI 让 AMD 也能跑 LLM,未来 AMD 可能成为 AI 计算的性价比选项之一。

📢 你的选择是什么?AMD 还是 NVIDIA?欢迎留言讨论!

🚨 全系桌面显卡 (英伟达,AMD,英特尔) AI 算力 对比已经做出来了 (推荐👍🏻重点标出),表格非常大,公众号回复 “20250219” 发给你
外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

不定期更新专业知识和有趣的东西,欢迎反馈、点赞、加星

您的鼓励和支持是我坚持创作的最大动力!ღ( ´・ᴗ・` )

参考

  1. AMD Radeon GPU 规格
  2. MLC AI 让 AMD GPU 运行 LLM
  3. 桌面 GPU 计算性能排行
  4. ROCm 支持 GPU 列表
  5. Tom’s Hardware
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值