内容预告
AMD 显卡在 AI 计算领域真的能抗衡 NVIDIA 吗?今天,我们通过对比 AMD Radeon™ RX 7900 XTX、RTX 4090、RTX 3090 Ti,以及 AMD 全系显卡的算力参数,深度剖析 AMD 在 AI 领域的表现!文末更有 GPU 选购建议,千万别错过!
为爱发电,如果对你有帮助,请不吝 点赞 和 关注,谢谢 😁
🔥 AMD 显卡 vs. NVIDIA 显卡:AI 计算的较量
在 AI 计算领域,NVIDIA 的 CUDA 生态几乎是默认选择,但 AMD 也在奋力追赶。特别是近两年,AMD 的 ROCm(类似 CUDA 的 AI 计算生态)不断完善,部分显卡甚至可以高效运行 LLM 和 Stable Diffusion。
那么,AMD 的旗舰卡 RX 7900 XTX 真的能在 AI 任务中撼动 RTX 4090 吗?我们来看数据对比:
AMD Radeon™ RX 7900 XTX | NVIDIA® GeForce RTX™ 4090 | NVIDIA® GeForce RTX™ 3090 Ti | |
---|---|---|---|
核心数 | 6144 Stream Processors | 16384 CUDA Cores | 10752 CUDA Cores |
显存 | 24GB GDDR6 | 24GB GDDR6X | 24GB GDDR6X |
FP16 算力 | 123 TFLOPS | 330 TFLOPS | 160 TFLOPS |
显存带宽 | 960 GB/s | 1008 GB/s | 1008 GB/s |
功耗 (TDP) | 320W | 450W | 450W |
价格 | $999 | $1599 | $1999 |
![]() |
📌 结论:
- 算力上:RTX 4090 依旧无敌,尤其是 FP16 计算,直接碾压 RX 7900 XTX。
- 价格上:RX 7900 XTX 便宜 600 美元,性价比更高。
- 适合大模型推理吗? AMD 需要更完善的软件支持,目前 MLC AI(可在 AMD 显卡上运行大模型)是个不错的方案 👉 MLC AI 让 AMD GPU 运行 LLM
📈 AMD 显卡 AI 计算表现
除了旗舰 RX 7900 XTX,AMD 还有哪些显卡适合 AI 计算?来看下各型号的算力表现👇
其中 TFLOPs/W 超过 0.1 的显卡被重点加粗
显卡 | 功耗 (W) | TFLOPs | TFLOPs/W | 显存容量 |
---|---|---|---|---|
RX 7900 XTX | 355 | 61.44 | 0.173 | 24GB GDDR6 |
RX 7900 XT | 315 | 51.61 | 0.164 | 20GB GDDR6 |
RX 7900 GRE | 260 | 45.978 | 0.177 | 16GB GDDR6 |
RX 7800 XT | 263 | 37.325 | 0.142 | 16GB GDDR6 |
RX 7700 XT | 245 | 35.168 | 0.144 | 12GB GDDR6 |
RX 7600 XT | 190 | 21.75 | 0.115 | 16GB GDDR6 |
RX 7650 GRE | 170 | 21.75 | 0.128 | 8GB GDDR6 |
RX 7600 | 165 | 21.75 | 0.132 | 8GB GDDR6 |
RX 6950 XT | 335 | 23.654 | 0.071 | 16GB GDDR6 |
RX 6900 XT水冷版 | 330 | 23.04 | 0.070 | 16GB GDDR6 |
RX 6900 XT | 300 | 23.04 | 0.077 | 16GB GDDR6 |
RX 6800 XT | 300 | 20.736 | 0.069 | 16GB GDDR6 |
RX 6800 | 250 | 16.166 | 0.065 | 16GB GDDR6 |
RX 6750 XT | 250 | 13.312 | 0.053 | 12GB GDDR6 |
RX 6750 GRE 12GB | 230 | 13.312 | 0.058 | 12GB GDDR6 |
RX 6750 GRE 10GB | 170 | 13.312 | 0.078 | 10GB GDDR6 |
RX 6700 XT | 230 | 13.215 | 0.058 | 12GB GDDR6 |
RX 6650 XT | 180 | 10.793 | 0.060 | 8GB GDDR6 |
RX 6600 XT | 160 | 10.605 | 0.066 | 8GB GDDR6 |
RX 6600 | 132 | 8.928 | 0.068 | 8GB GDDR6 |
RX 6500 XT | 107 | 5.765 | 0.054 | 4GB GDDR6 |
RX 6400 | 53 | 3.565 | 0.067 | 4GB GDDR6 |
RX 5700 XT 50周年纪念版 | 235 | 10.138 | 0.043 | 8GB GDDR6 |
RX 5700 XT | 225 | 9.754 | 0.043 | 8GB GDDR6 |
RX 5700 | 180 | 7.949 | 0.044 | 8GB GDDR6 |
RX 5600 XT | 150 | 7.188 | 0.048 | 6GB GDDR6 |
RX 5600 | 150 | 6.39 | 0.043 | 6GB GDDR6 |
RX 5500 XT | 130 | 5.196 | 0.040 | 8GB GDDR6 |
Radeon VII | 300 | 13.824 | 0.046 | 16GB HBM2 |
RX Vega 64水冷 | 345 | 13.738 | 0.040 | 8GB HBM2 |
RX Vega 64 | 295 | 12.665 | 0.043 | 8GB HBM2 |
RX Vega 56 | 210 | 10.544 | 0.050 | 8GB HBM2 |
RX 590 | 225 | 7.119 | 0.032 | 8GB GDDR5 |
RX 580 | 185 | 6.175 | 0.033 | 4/8GB GDDR5 |
RX 580 2048SP | 150 | 6.175 | 0.041 | 4/8GB GDDR5 |
RX 570 | 150 | 5.095 | 0.034 | 4/8GB GDDR5 |
RX 560 XT | 150 | 2.106 | 0.014 | 4GB GDDR5 |
RX 560 | 70 | 2.611 | 0.037 | 4GB GDDR5 |
RX 550 | 50 | 1.211 | 0.024 | 2/4GB GDDR5 |
🎯 你该买 AMD 还是 NVIDIA?
目前 AMD 的 AI 软件生态正在逐步发展,但是仍然还有很多 GPU 不支持的情况,需要多一点折腾,但是性价比高。
NVIDIA 相对生态完整,少折腾。
🎯 AMD 显卡 AI 计算推荐指南:选购前你需要知道的事!
💡 AMD 目前的 AI 计算支持仍存在局限,主要由于 ROCm(AI 计算框架)支持不完善。
- 官方支持的 GPU:完全支持 RX 7900 XTX / 7900 XT / 7900 GRE。
- 最低支持显卡:从 RX 6600 开始(部分功能受限)。
- Linux 兼容性较差:仅支持 RX 7900 系列和 Radeon VII(参考 Tom’s Hardware)。
- Windows 兼容性较好:大部分 RX 6000 / 7000 系列均支持,但 RX 6700 - RX 6750 XT 不支持 HIP SDK,仅支持 Runtime(ROCm 官方支持列表)。
✅ AI 计算显卡推荐:按需求选购
需求类型 | 推荐显卡 | 关键参数优势 |
---|---|---|
专业级 AI 训练(LLM、大模型) | RX 7900 XTX | ✅ 24GB 显存 / 61.44 TFLOPs / 0.173 TFLOPs/W |
高能效生成式 AI(Stable Diffusion) | RX 7900 GRE | ✅ 16GB 显存 / 0.177 TFLOPs/W(能效冠军) |
实时推理 & 多任务处理 | RX 7800 XT | ✅ 16GB 显存 / 37.3 TFLOPs / 230W 低功耗 |
预算友好型 AI 开发 | RX 6750 GRE | ✅ 12GB 显存 / 超高性价比(适合入门 AI) |
边缘计算 & AI 部署 | RX 7600 XT | ✅ 16GB 显存 / 单槽设计 + 190W 超低功耗 / FP16 加速 |
🔍 选购建议
- 如果你是专业 AI 研究人员,建议仍优先选择 NVIDIA RTX 4090,因为 CUDA 生态更完善,训练效率更高。
- 如果你在意性价比 & 轻量 AI 计算,RX 7900 GRE / 7800 XT 是不错的选择。
- 如果你的 AI 计算任务较轻,如边缘计算 & AI 部署,RX 7600 XT 低功耗且可行。
📢 AMD AI 计算生态仍在发展中,未来 ROCm 可能会带来更多突破,但目前仍需谨慎选择!
注:
- 显存门槛:Stable Diffusion XL 需 ≥12GB,LLaMA-13B 需 ≥16GB
- 架构优势:RDNA3 显卡支持 AI 矩阵扩展指令(WMMA),加速 Transformer 架构
- 生态现状:ROCm 6.1+ 已原生支持 PyTorch 2.4,CUDA 代码转换效率达 92%
🧐 为什么 AMD 显卡 AI 表现一直弱于 NVIDIA?
AMD 在 AI 计算上确实比 NVIDIA 弱,主要原因:
- 软件生态落后:NVIDIA 的 CUDA 已经发展十几年,AMD 的 ROCm 生态还不够完善,很多 AI 框架都优先支持 CUDA。
- 硬件优化不足:NVIDIA 的 Tensor Cores 专门为 AI 计算优化,而 AMD 主要依赖 FP16/FP32 计算,效率不如 Tensor Cores。
- 驱动问题:AMD 在 AI 计算驱动上存在兼容性问题,NVIDIA 体验更顺滑。
💡 结论:AMD 能否挑战 NVIDIA?
目前来看,AMD 依然无法全面撼动 NVIDIA 在 AI 计算上的地位,但随着 ROCm 生态的完善、MLC AI 让 AMD 也能跑 LLM,未来 AMD 可能成为 AI 计算的性价比选项之一。
📢 你的选择是什么?AMD 还是 NVIDIA?欢迎留言讨论!
🚨 全系桌面显卡 (英伟达,AMD,英特尔) AI 算力 对比已经做出来了 (推荐👍🏻重点标出),表格非常大,公众号回复 “20250219” 发给你
不定期更新专业知识和有趣的东西,欢迎反馈、点赞、加星
您的鼓励和支持是我坚持创作的最大动力!ღ( ´・ᴗ・` )