- 博客(25)
- 收藏
- 关注
原创 看看你的电脑可以跑 AI 模型吗?
随着大语言模型(LLM)在各个领域的应用快速普及,越来越多开发者想要尝试在本地运行这些模型。然而,这些模型对计算机硬件的要求极高,特别是在显存(VRAM)和推理速度方面。那么,如何评估你的设备是否合适?本文将帮助你了解模型的存储需求、推理平台选择和不同硬件的实际表现,助力你找到最适合的配置。绝大多数电脑 (包括笔记本) 几乎可以跑 AI 模型,但是使用不同 AI 模型,不同平台,不同机器推理速度差异会很大。
2024-11-06 02:33:34 745
原创 全网最全香橙 Pi 选择指南:这一篇就够了
香橙派推出了多款基于RK3588和RK3588S的开发板和计算模块,覆盖从入门到高性能需求的多样化场景。以及最新的Orange Pi AIPro 20TOPS 版本。CPU:Pi 5 Plus = Pi 5 Max >= 其他 > AI Pro。Pi 5 Plus 和 Pi 5 Max 的 CPU 最强,使用的是 RK3588,相比 RK3588S 支持更大的 I/O 吞吐,两款 AI Pro 强在 NPU 上,输在 CPU 上。
2024-10-21 05:56:38 1013
原创 为什么你总碰到渣男?伯克森悖论
伯克森悖论是因选择偏差引发的统计错觉,发生在我们选择样本时忽略了潜在的混淆因素,导致误以为两个变量之间存在关联或因果关系。简单来说,因为某些原因只观察到了一部分数据 (或者群体) ,从中得出的结论会与整体情况下的不符。
2024-10-18 05:07:34 836 2
原创 预算有限也能玩转 AI:香橙派、树莓派与 Jetson 的选择攻略
随着 AI 技术的迅猛发展,越来越多的边缘计算设备可以处理从轻量级任务到复杂的 AI 模型。在本文中,我们将对比几款主流的边缘 AI 设备,包括和,并探讨在边缘 AI 领域的潜力。我们将重点分析各设备的算力、功耗、内存以及支持的 AI 模型类型,帮助开发者选择最合适的边缘 AI 解决方案。结论和推荐在文末 👉🏻。
2024-10-06 05:26:17 1706
原创 AI 帮你搞定学习:如何使用 NotebookLM 成为学霸
上传文档后,点击“常见问题”按钮,NotebookLM 会根据文档自动生成与知识图谱相关的常见问题和回答。NotebookLM 是一个强大的学习工具,能够帮助你从繁杂的文档中快速提取信息、生成学习指南,并通过智能对话解答你遇到的难题。无论你是学生、老师,还是在职场打拼的上班族,NotebookLM 都能为你带来高效的学习和工作体验。赶紧试试 NotebookLM,让 AI 帮你轻松获取知识吧!
2024-10-02 23:58:36 904
原创 使用 AI,人人都能做产品设计
所有的内容可以在这个 Google Doc:https://docs.google.com/document/d/1sq-g9yChtRYDrqL0KTgHeW4ZzwPKzPRyQ79pQEfuxDU/edit 中找到,如果你访问不了,请在公众号回复 “20250925”,我会把文件分享给你。[^1]. Google Doc 文件: https://docs.google.com/document/d/1sq-g9yChtRYDrqL0KTgHeW4ZzwPKzPRyQ79pQEfuxDU/edit。
2024-09-25 19:01:13 759
原创 周末搭建树莓派服务器之二(内网穿透)
但是在日常使用中,很多用户希望能够从外网轻松访问树莓派,无论你是在办公室还是在外地旅行。通过路由器的端口转发功能,你可以成功实现树莓派的内网穿透。在下一篇文章中,我们将讨论如何在配置好内网穿透后,在树莓派上部署一个安全的Web服务器,敬请期待!我们使用笔记本命令行,使用外网 IP 地址,测试是否能通过 SSH 远程登录我们的树莓派服务器。你无需额外的服务器或服务,只需配置路由器,便能轻松实现外网访问。在端口转发页面,点击添加按钮,将上述信息保存为一条新的转发规则。ღ( ´・ᴗ・` )
2024-09-24 13:38:08 667
原创 周末搭建树莓派服务器之一(Ubuntu烧录)
烧录完成后,Raspberry Pi Imager 会弹出提示,告知您可以安全地移除 SD 卡。启动 Raspberry Pi Imager 后,点击“Choose OS”按钮,从操作系统列表中选择适合您需求的系统。工具,我们将详细讲解如何选择合适的操作系统、配置系统设置,以及最终完成系统的烧录。在写入系统前,点击右下角的设置按钮进行一些必要的配置,如设置主机名、启用 SSH、配置 Wi-Fi 等。点击“Choose Storage”按钮,选择您要写入系统的 SD 卡。ღ( ´・ᴗ・` )
2024-09-23 04:45:49 827
原创 辛普森悖论 (肾结石应该开刀还是保守治疗)
辛普森悖论表明,即使统计数据是“客观”的,对数据的分析会涉及到主观的假设 (被验证的假设是知识),这一点很容易被忽视。特别是手里拿着各种锤子 (数学模型) 的数据分析师要注意,不要看到钉子 (数据) 就是一棒锤 (上模型)。在本文的例子中,决定是否控制某些混杂变量可能会基于主观的理论假设或先验知识。这种选择直接影响了因果推断的结果。
2024-08-15 01:47:02 319
原创 相关性不是因果
但当我们把这些城市根据温度分开,在每个小数据内做相关分析时,就会发现在同样温度的城市中,这两个变量几乎不相关。我会在后面的文章中陆续更新因果分析的一些有趣理论,比如因果图模型,潜在结果框架,回归方法,匹配方法等。当然不是所有的选择问题可以用因果推断来解决,前提是得有数据,此外数据还要满足一些假设。再来看一个更有趣的案例:假设我们收集了不同纬度城市的冰淇淋销量与溺水死亡人数的数据。今天的开场就从一个老生常谈的话题开始:相关与因果之间的关系。简单来说,因果推断是一个使用数据帮助人们做选择的理论。
2024-08-12 04:08:46 265
原创 只需掌握四个查询,就能解决 95% 的 SQL 问题
这里根据 set semantics (集合语义) 给出的对应表。关系代数SQL 语法σSPRt∣t∈R∧tsatisfiesSPσSPRt∣t∈R∧tsatisfiesSPπA1⋯AnRrA1⋯rAn∣r∈RπA1⋯AnR{(rA1⋯rAn∣r∈RR×StA1⋯tAnrB1⋯rBn∣t∈R∧r∈S。
2024-06-02 23:29:54 794
原创 提升你的阅读效率:背景颜色的重要性
通过这项研究,我们了解到背景颜色对阅读的巨大影响。选择合适的背景颜色,不仅可以提高阅读速度,还能让阅读变得更加轻松愉快。希望这些建议能帮助你在日常生活中享受更好的阅读体验。
2024-05-31 22:38:59 2339
原创 实战 Wikipedia 与 Wikidata 知识图谱数据获取 (8)
如何从 WikiData 和 DBpedia 上获取数据。文末送知识图谱最新 2021 发布的开源书
2024-01-13 08:47:40 2047
原创 用逻辑降维打击 SPARQL 查询:无痛写 NOT EXISTS (7)
在编写查询时,`NOT EXISTS`往往是最反直觉且难以理解的部分。本文将分享如何清晰且轻松地掌握SPARQL中的`NOT EXISTS`查询方法,这些技巧同样适用于其他查询语言。
2024-01-10 03:46:15 942
原创 绕过 YouTube 广告拦截限制,继续无广告学习
最近,作为全球最大的“学习平台”的 YouTube 对广告屏蔽的检查变得更加严格,导致许多广告拦截器,如AdBlock、AdGuard、Adblock Plus无法使用。本文将分享一个实用的方法,帮助您绕过这些限制。: 访问 https://chromewebstore.google.com/detail/ublock-origin/cjpalhdlnbpafiamejdnhcphjbkeiagm 安装 chrome 插件。ღ( ´・ᴗ・` ): 将复制的代码粘贴到自定义规则页面,并点击应用按钮。
2024-01-03 18:59:25 1665 2
原创 深入探索 SPARQL,使用复杂图模式和聚合函数 (6)
继上一篇文章对SPARQL基础语法的介绍后,本期我们将深入探讨SPARQL中的高级概念,包括Triple Pattern(三元组模式),Basic Graph Pattern(基本图模式),Graph Pattern(图模式),以及Aggregation Function(聚合函数)。我们将一步步展示如何利用这些高级特性,从RDF(资源描述框架)知识图谱中有效地检索和转换数据。
2023-11-16 06:28:33 134
原创 GPT4All:三步把免费 Chat GPT 搬到你的笔记本上
今天分享一个 GPT 本地化方案 -- `GPT4All`。它有两种方式使用:(1) 客户端软件;(2) Python 调用。另外令人激动的是,`GPT4All` 可以不用 GPU,有个 16G 内存的笔记本就可以跑。(目前 `GPT4All` 不支持商用,自己玩玩是没问题的)。
2023-11-12 03:37:07 2573 9
原创 如何计算你们同班同学的缘分 (2)
今天在《理性》这本书里读到了一个生日悖论。说一个60人的班级,存在同一天生日的同学概率超过 95%,感觉有点不真实。曾在学校时,我发现如果两个同学同一天生日,我会认为这是一种缘分。若他们一男一女,更觉缘分深厚。他们结为伴侣就更不可思议了。那么,这些概率如何计算?这种缘分有多不可思议?我们假设一年有 365 天,一个班 60 人,男女各半。
2023-11-11 05:21:52 100
原创 SPARQL查询:如何高效检索Web数据 (5)
本文将带您深入了解如何使用SPARQL查询语言来检索RDF数据,掌握其基础语法,并通过实例学习如何执行查询
2023-11-10 05:26:14 151
原创 图数据模型介绍 (4)
Directed Edge-labeled Graph, Heterogeneous Graph, Property Graph
2023-11-06 06:36:04 143
原创 动手构建你的第一个知识图谱 by RDF (3)
RDF 的全称叫 Resource Description Framework (资源描述框架)。它是实现语义网络的三个基础技术之一 (其他两个是 SPARQL 和 OWL)。它是被 W3C 推荐的一个数据模型:这意味着所有的语义网络数据都用 RDF 来存储;另外它也是一种在万维网中表示资源信息的语言,有着一套自己的语法规则。
2023-11-05 03:45:15 313
原创 本体论介绍(2)
上面是一个本体论的简单例子,通常构造领域的本体论是一件复杂的工作,你需要对领域内所有的概念,术语,它们之间的关系,属性有完整的认识,这通常是领域内专家的能力。本体论是对某个专业领域内的所共识的概念和它们之间关系的显示的和正式的细化定义 (Specialization)。红色节点之间的边是关系:"会诊","子类" (一个定义分类的特殊关系),"检测";比如:“病人”,“生物标记”。实例 (Instance):一个具体的类的个例,与它同用的术语还有 Individual (个体), Entity (实体)。
2023-10-31 08:40:45 174
原创 知识图谱介绍 (1)
通过对比,我们可以发现,chatgpt 的第一个答案是错误的,第二个答案中的 “张彩星” 根本不是三国演义中的人物,而是在《三国杀》《真三国无双》等网络游戏中的人物。chatgpt 这类联结主义方法并不是所有问题都能正确回答,它不具备很好的逻辑推理能力 (找的证据有时看起来像那么回事,实际是错误的),对低频实体(糜夫人)的理解效果差,但是推理速度很快。而知识图谱构建的是知识 (验证为真的信息),并且具备一定的逻辑推理能力,数据透明,可以提供可靠的解释,但是它的推理速度慢,可回答的问题受限于建模的知识数量。
2023-10-29 16:24:07 142
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人